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Abstract

Recombination and Propagation of Quasiparticles in Cuprate Superconductors

by

Nuh GEDIK

Doctor of Philosophy in Physics

University of California at Berkeley

Professor Joseph Orenstein, Chair

Rapid developments in time-resolved optical spectroscopy have led to renewed interest in

the nonequilibrium state of superconductors and other highly correlated electron materials.

In these experiments, the nonequilibrium state is prepared by the absorption of short (less

than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy

distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time-

resolving the changes in the optical response functions of the medium that take place after

photoexcitation. Ultimately, the goal of such experiments is to understand not only the

nonequilibrium state, but to shed light on the still poorly understood equilibrium properties

of these materials.

We report nonequilibrium experiments that have revealed aspects of the cuprates

that have been inaccessible by other techniques. Namely, the diffusion and recombination co-

efficients of quasiparticles have been measured in both YBa2Cu3O6.5 and Bi2Sr2CaCu2O8+x
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using time-resolved optical spectroscopy. Dependence of these measurements on doping,

temperature and laser intensity is also obtained.

To study the recombination of quasiparticles, we measure the change in reflectivity

∆R which is directly proportional to the nonequilibrium quasiparticle density created by

the laser. From the intensity dependence, we estimate β, the inelastic scattering coefficient

and γth thermal equilibrium quasiparticle decay rate. We also present the dependence of

recombination measurements on doping in Bi2Sr2CaCu2O8+x. Going from underdoped to

overdoped regime, the sign of ∆R changes from positive to negative right at the optimal

doping. This is accompanied by a change in dynamics. The decay of ∆R stops being

intensity dependent exactly at the optimal doping. We provide possible interpretations of

these two observations.

To study the propagation of quasiparticles, we interfered two laser pulses to in-

troduce a spatially periodic density of quasiparticles. Probing the evolution of the initial

density through space and time yielded the quasiparticle diffusion coefficient, and both

inelastic and elastic scattering rates. Measured diffusion coefficient suggests that the quasi-

particles induced by the laser occupy primarily states near the antinodal regions of the

Brillouin zone.

Professor Joseph Orenstein
Dissertation Committee Chair
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Chapter 1

Introduction

As we approach the end of second decade since the discovery of high temperature

superconductivity, the mechanism remains to be a mystery. In particular, we still don’t know

the nature of the bosonic excitation that binds the electrons together to form a cooper pair

in these materials. Studying the low energy excitations is one approach in search for this

mysterious boson.

One complication that cuprates have compared to conventional superconductors

is that the superconducting gap is not uniform across the fermi surface. It has d-wave

symmetry compared to s-wave symmetry in conventional superconductors. The gap vanishes

in 4 directions (nodal points) 450 to the Cu-O bonds, and it has the maximum value

along the Cu-O bonds (antinodal points). Therefore one can get two types of excitations

in the vicinity of these two points, namely nodal and antinodal excitations. Since the

typical maximum value of the gap is on the order of 50 meV, in thermal equilibrium only

nodal quasiparticles would be present in the superconducting state. And in fact, all the
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experiments done in thermal equilibrium probes the properties of nodal quasiparticles since

the number of antinodal quasiparticles is exponentially smaller than the nodal ones in

thermal equilibrium. On the other hand, since the antinodal quasiparticles are the ones

that experience the pairing interaction most strongly, their properties would be far more

interesting and useful to understand the nature of pairing. In this thesis, we argue that

non-equilibrium experiments are ideal ways of creating and probing antinodal quasiparticles.

In these experiments, the nonequilibrium state is prepared by the absorption of

short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density

and energy distribution of quasiparticles. The evolution of the nonequilibrium state is

probed by time-resolving the changes in the optical response functions of the medium that

take place after photoexcitation. The nonequilibrium state of the cuprate superconductors,

in particular, has been studied extensively. Ultimately, the goal of such experiments is

to understand not only the nonequilibrium state, but to shed light on the still poorly

understood equilibrium properties of these materials. Recently, nonequilibrium experiments

have revealed aspects of the cuprates that have been inaccessible by other techniques. For

example, both the diffusion and recombination coefficients of antinodal quasiparticles have

been measured in underdoped single crystals of YBa2Cu3O6.5 using time-resolved optical

spectroscopy.

This thesis is organized as follows: In Chapter 2, we describe the pump probe spec-

troscopy, the experimental technique used to measure the recombination of quasiparticles.

Chapter 3 describes the results of pump probe experiments done on YBa2Cu3O6.5 and their

implications . In Chapter 4, we study the pump probe signal as a function of doping in the
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Bi2Sr2CaCu2O8+d system. In Chapter 5, transient grating spectroscopy, the experimental

technique used to measure the diffusion of quasiparticles is described. Chapter 6 presents

the first measurement of quasiparticle diffusion and its implications. Below we provide a

brief summary of each chapter.

In Chapter 2, we begin by introducing pump probe spectroscopy. We explain

our experimental setup in detail, and describe how we can measure very small changes

in reflectivity. Having this very high sensitivity of 10−7 in fractional reflectivity change

(∆R/R) was very crucial for our experiments.

In Chapter 3, we report results and analysis of time-resolved photoinduced reflec-

tivity experiments on the cuprate superconductor YBa2Cu3O6.5. The sample, which has

Tc=45 K, was characterized by a high degree of purity and Ortho II ordering. The change

in reflectivity ∆R was induced and probed using pulses of 100 femtosecond duration and

photon energy 1.55 eV from a Ti:Sapphire laser. We provide a detailed picture of the decay

rate γ of ∆R as a function of temperature T and pump intensity I. At low T , γ decreases

linearly with decreasing I, extrapolating to nearly zero in the limit that I tends to zero. At

higher temperature γ has the same linear dependence, but with nonzero limit as I → 0. In

the interpretation of these results we assume that ∆R is proportional to the nonequilibrium

quasiparticle density created by the laser. From an analysis of the γ vs. I we estimate β,

the coefficient of proportionality relating the quasiparticle decay rate to the density. The

intercept of γ vs. I yields the thermal equilibrium quasiparticle decay rate. In a discussion

section, we argue that the quasiparticles induced by the laser occupy primarily states near

the antinodal regions of the Brillouin zone. We explain the divergence of the lifetime of these
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particles as T and I both tend to zero as a consequence of momentum and energy conserva-

tion in electron-electron scattering. Next, we discuss the significance of the measured value

of β, which is ≈ 0.1 cm2s−1. We point out that the natural unit for β in a two-dimensional

superconductor is h̄/m∗, and define a dimensionless constant C such that β ≡ Ch̄/m∗. If

the decay process is one in which quasiparticles return to the condensate with emission of a

phonon, then C is a measure of the electron-phonon interaction. Alternatively, expressing

the marginal Fermi liquid scattering in the normal state in terms of an effective β implies

C = 1/π, which is in excellent agreement with the experimentally determined value in the

superconducting state.

In Chapter 4, we study the pump probe signal as a function of laser intensity and

carrier concentration in Bi2Sr2CaCu2O8+d. We find that there is an abrupt change in the

∆R at optimal doping. In the underdoped side of the diagram ∆R is positive and the

decay rate γ is linear in intensity. On the overdoped side, ∆R becomes negative and the

decay is essentially independent of intensity. We discuss the potential meaning of these two

important observations.

In Chapter 5, we describe transient grating spectroscopy. We describe our hetero-

dyne detected transient reflecting grating setup. Use of a custom made diffractive optics

together with a novel way of in situ phase calibration is described.

In Chapter 6, we describe the first measurements of diffusion constant of nonequi-

librium quasiparticles in cuprates. The measured diffusion constant turns out to be 2 order

of magnitude smaller than the diffusion constant of nodal quasiparticles estimated from

microwave experiments done in thermal equilibrium. This is presented as a direct evidence
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that non-equilibrium experiments are creating and probing antinodal quasiparticles. Mean

free path and elastic scattering rate is estimated using the measured diffusion constant. We

discuss the implication of obtained mean free path on the electronic inhomogeneity seen by

STM experiments on the Bi2Sr2CaCu2O8+d system. Our results raise the possibility that

the disparities in relaxation rate and sign of ∆R observed in other cuprate samples may

be a consequence of a general, or perhaps universal, change in quasiparticle dynamics that

takes place at optimal doping.
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Chapter 2

Pump Probe Spectroscopy

Pump probe spectroscopy measures the transient change in reflectivity (∆R) of a

sample induced by an ultrashort laser pulse. ∆R is measured by using a weaker laser pulse.

The first strong pulse which generates ∆R is called ”pump” pulse, and the second weaker

pulse that measures the change is called the ”probe” pulse. By delaying the probe pulse

with respect to the pump pulse in time, ∆R is obtained as a function of time (∆R(t)).

Measuring ∆R(t) is a way of probing the time evolution of the nonequilibrium state created

by the pump pulse.

This technique has been used successfully in a wide variety of applications. In

superconductors, it can be used to study the quasiparticle dynamics. Quasiparticles are the

elementary excitations of a superconductor, created when a Cooper pair of electrons breaks

apart. In the experiment, an ultrafast laser pulse incident on the superconductor breaks

apart the cooper pairs generating a nonequilibrium population of quasiparticles. Existence

of nonequilibrium quasiparticles changes the equilibrium value of the reflectivity. As the
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quasiparticles re-pair and join the condensate, reflectivity returns back to its equilibrium

value. ∆R is proportional to the density of excess quasiparticles. Studying ∆R(t) as a

function of experimental control parameters (i.e. temperature, laser intensity, polarization,

magnetic field etc ...) yields information about quasiparticle dynamics. Typical fractional

changes in reflectivity (∆R/R) are on the order of 10−4 - 10−5. Our pump probe setup can

measure ∆R/R as small as 10−7.

2.1 Experimental Setup

In this section, I will describe the experimental setup in detail. Laser system and

optics used in the experiment will be described in detail. Signal detection scheme and data

analysis will also be discussed. Experimental improvements that contribute to the ultrahigh

sensitivity will be explained.

2.1.1 Laser System and Optics

In figure 2.1 experimental setup is shown. Here we will describe the individual

components of the setup in more detail.

The laser system used in the experiment has two parts. The first laser is a diode

pumped Nd:Yag laser (Spectra Physics Millenia). It produces continuous wave output at

514 nm at a power of 4.5 Watts. This laser pumps a Ti:Sapphire laser (KM Labs). Ti:Saph

laser converts the continuous wave pump laser into short laser pulses centered at 820 nm.

These short pulses have a width of less than 100 fs and a repetition rate of 90 MHz. The

average power is about 500 mW.
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Figure 2.1: Optical Schematic of the apparatus. A discussion of the signal processing is
included in the body.

After the laser there is a lens pair to collimate the beam. To minimize the diver-

gence a pair of lens with equal focal lengths is used. The two lens are placed approximately

twice the focal length (2f) away from each other. When the distance is exactly 2f , the lens

pair has no effect on divergence. One of the lens is mounted on a micrometer. By tuning

the micrometer position, the divergence of the laser beam can be greatly improved. A 100

µm pinhole placed on the focal point between the lenses acts as a spatial filter. The spatial

noise in the beam profile will focus on to a different point then the main beam. The pinhole

is mounted on a XYZ stage. The power transmitted across the pinhole is maximized by

optimizing the three micrometer axes. We obtain a very clean beam profile after the pinhole

with more than 95% efficiency.
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After the collimator, there is prism pair which compensates the group velocity

dispersion (GVD). Since the laser has a limited pulse width in time, it has a finite bandwidth

in frequency. The FWHM bandwidth in frequency is about 40 nm. Different frequency

components that make up the pulse have different velocities inside the optics. Therefore the

pulse will spread in time as it travels through the optics. This effect can be pre-compensated

by using a prism pair. Prisms are placed at minimum deviation angle positions. The pair

introduces a negative GVD that is proportional to the separation between the prisms. Also

since the laser beam travels through the prisms, it introduces a positive GVD proportional

to the amount of prism glass in the beam path. Each prism is mounted on a micrometer

through which prisms can be inserted more into the beam or pulled away to change the

amount of glass light travels. For both pump and probe arms, pulse width in time is

minimized by fine tuning the prism separation and the micrometer positions. In our case,

pump beam traveled through some more additional optics that was not in the probe beam’s

path (Photo elastic modulator and polarizer). So we have adjusted the prism pair causing

the shortest pulse width at the sample position for the pump beam. Additional glass is

placed on the probe arm to make the pulse with the same as the pump beam. Pulse with

is measured by use of an external autocorrelator.

After the GVD compensator, there is a beam splitter which splits the laser beam

into a stronger pump beam and a weaker probe beam. At this point, pump beam is about

10 times stronger than the probe beam. In the probe arm, there is a Klinger stepper motor

which can change the beam path in steps of one micron. This stage is about 15 cm long,

so it can generate a maximum of 1 ns time delay as the light travels back and forth. It is
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only used when finding the zero time delay of the pump and the probe beams at the sample

position. Once the position at which pump and probe pulses arrive at the sample at the

same time is set, we do not use this stepper motor when taking data. In the actual data

taking, the time delay is changed by a vibrating delay line (Clark-MXR ODL-150) placed

in the pump arm. Frequency and the oscillation amplitude can be adjusted through the

function generator which drives this instrument. Typical value for the frequency is 30 Hz

and the delay amplitude can go up to 100 ps. Using a fast oscillating mirror to change the

optical delay helps tremendously in terms of signal to noise compared to using a stepper

motor.

Following the vibrating mirror in the pump arm, there is a photoelastic modulator

(Hinds Instruments PEM-90). A PEM is an instrument used for modulating or varying

the polarization of a beam of light at a fixed frequency. Its principle of operation is based

on the photoelastic effect, in which a mechanically stressed sample exhibits birefringence

proportional to the resulting strain. Typically, it contains a rectangular bar of suitable

transparent material which is made to vibrate along one axis at its natural frequency by a

quartz transducer. As the material vibrates, it generates a birefringence that also vibrates

at the same frequency. In our case, the frequency of PEM is 50 kHz. We set the peak

retardation amplitude in the controller to half the wavelength (λ/2).

Before the PEM, laser beam is polarized parallel to the optical table. The PEM

is mounted such that its axis is at 450 to the incident polarization. Optical delay for

the component of the light polarized along the PEM axis oscillates between 0 and λ/2.

When the peak retardation is exactly λ/2, PEM acts like a half wave plate and it rotates
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the polarization of light by 900. As the retardation of PEM oscillates between ±λ/2, the

polarization of light after PEM alters between unchanged, right circularly polarized, rotated

by 900 and left circularly polarized states. After the PEM, there is a polarizer (not shown in

figure 2.1) with its axis aligned perpendicular to the polarization of light before the PEM.

When the retardation of PEM reaches λ/2, the laser beam after PEM is polarized along

the polarizer axis and 100% goes through. When the retardation is 0, the laser beam is

polarized perpendicular to the polarizer axis and it is blocked entirely. The intensity of light

after the polarizer oscillates between full intensity and zero with twice the PEM frequency.

Therefore, PEM combined with a polarizer acts like a chopper at 100 kHz. The controller

for the PEM has an output at 100 kHz which we use as a reference signal for the lockin

amplifier. The advantage of using a PEM rather than a simple chopper is the ability to

chop at such a high frequency of 100 kHz. This greatly reduces the 1/f noise.

PEM and the polarizer are the optics that are only present in the pump arm.

They introduce extra GVD compared to the probe arm. To compensate for this effect,

we have placed a slab of quartz with appropriate thickness. To adjust the thickness, we

first minimized the pulse width of the pump beam by adjusting the prism pairs. Then

we monitored the probe pulse with and minimized it by placing an quartz slab with an

appropriate thickness ( shown as a glass rectangle in figure 2.1).

After the PEM and the polarizer, there is a set of neutral density (ND) filters

placed on two computer controlled wheels (CVI lasers AB300 wheels) in the pump arm.

They are used to change the intensity of the pump beam. Having the ND filters computer

controlled is very convenient to study the intensity dependence of the signal. There is also
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a similar set of manually controlled neutral density filters placed in the probe arm to adjust

the probe intensity (not shown in the figure 2.1). Following the ND filters, half wave plates

are used to rotate the polarization of the beams when studying the polarization dependence.

After this, there is a special lens (achromatic doublet with increased precision and

minimum spherical aberration) used to focus the beams on to the sample. The focal length

of the lens is 8 inches. Before the lens, the pump and the probe beams run parallel to each

other along the lens axis separated from each other by half an inch. The beam diameter

before the lens is about 2 mm. The focal spot size on the sample is 100 µm. To maximize

the oveelap of the two beams, a pinhole mounted on a XYZ translational stage is used.

First, pump beam is blocked and the focus of the probe beam is found by maximizing the

power transmitted through the pinhole by optimizing the XYZ positions. Then, probe beam

is blocked and pump light passing through the pinhole is maximized by adjusting the pump

mirror before the lens.

Reflected probe from the sample is collected by a mirror and sent to a detector

(we used a Nirvana Auto-Balanced photoreceiver in a single detector mode). Since we are

trying to detect changes in the intensity of the probe beam due to modulation of the pump

beam, any leakage of scattered pump light will generate noise at the detection frequency.

To discriminate the pump scattering we cross-polarize pump and the probe beams, and use

a polarizer before the detector aligned to pass the probe light and block the pump light.

2.1.2 Data Acquisition

The output of the detector is then sent to the lockin amplifier (Stanford Research

Systems SR850) as the signal. A reference signal from the PEM’s controller at 100 kHz
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is used for the lockin reference. The output of the lockin is sent to a digital oscilloscope

(Lecroy 9310M) and serves as the y-axis. As mentioned in the previous section, time delay

between the pump and probe is varied by a vibrating delay line. A function generator drives

the delay line via a driver module. The position of the delay line is converted to a voltage

by the same delay line and sent to the oscilloscope. This signal serve as the x-axis. These

two channels (x and y) are averaged by the oscilloscope and sent to the computer. Data

acquisition software is written in LabWindowsCVI and Matlab is used to analyze the raw

data.

To compromise between the signal to noise and the time resolution, time constant

of the lockin is set to 30 µs. For this value of the time constant, time resolution is about

100 fs. This is plenty enough considering that we are studying decays with characteristic

times of couple of picoseconds. When studying faster decays (i.e. at high temperatures or

high intensities) a very simple modeling can be used to extract lifetimes on the order of

couple hundred femtoseconds.

There are two basic modes that we operate the system. The most common way

is to hold the temperature fixed and record the reflectivity traces as a function of time

by sweeping the time delay. We change the pump intensity and record the time traces at

different pump intensities at a fixed temperature. We then change the temperature to a

different value to study the temperature dependence. The second mode of data taking is to

fix the laser intensity and ramp up the temperature at a slow rate. We use the continuous

averaging feature of the digital oscilloscope and record time traces and the temperature

values at fixed time intervals. At the end we get a three dimensional data, where transient
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reflectivity change is obtained as a continues function of temperature and time delay. The

second method is used to get a quick overview of the general behavior of the signal, and

first method is used for quantitative analysis.

2.2 Cryostats

We have used two different kinds of cryostats. In the earlier stages of the data

taking, we were using a Janis 12CNDT magnet cryostat. It has a capability of applying

magnetic field (up to 7 tesla) and cooling down to very low temperatures (down to 2 K).

Because of the tedious cool down procedure and low angle of incidence capability of this

system, we have switched to an Oxford Instruments Microstat. With this cryostat one can

reach the base temperature of 4.2 K in about 2 hours starting from the room temperatures.

Also since the sample is only about half an inch away from the window, we can obtain

very large angle of incidence as required by the transient grating experiments (please see

Chapter 5).

In both cases, the entire cryostat is mounted on a translation stage to facilitate

fine positioning of the sample in the plane of the optical table. We can also set the pitch or

height of the cryostat by adjusting its mount. This freedom is an indispensable feature of

our apparatus, since the surface of the sample may not be reflecting the beam in a useful

direction. We can also remedy situations in which certain parts of the sample may have too

much pump scatter.

Knowing the exact temperature of the sample is crucial for understanding the

temperature dependence of the signal. In both cryostats, there is a temperature sensor
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mounted on the sample stick about an inch away from the sample. This distance has

potential to cause error in temperature measurements due to thermal gradients. To remedy

this, we have placed an additional temperature sensor (LakeShore CX-1050) to the back of

the substrate. Samples and sensors are affixed with N type Apiezon cryogenic grease, or

GE-7031 Varnish(LakeShore).

2.3 Experimental Improvements

In this section, we will describe the improvements made in the experimental setup.

Through these improvements, we were able to measure fractional changes in reflectivity

(∆R/R) of about 10−7. Having this kind of sensitivity made it possible to study the limit of

very low intensity from which equilibrium properties of the sample can be deduced. Having

a big dynamic range in intensity (three orders of magnitude) was crucial to understand the

intensity dependence.

There are a number of factors that contribute to this ultrahigh sensitivity. First

of all, chopping at a very high frequency of 100 kHz gets rid of most of the 1/f noise. Using

a vibrating delay line rather than a stepper motor provides some additional averaging of

the laser noise.

One of the major improvements that we did in the setup was to improve the colli-

mation of the laser beams by introducing a lens pair. This turns out to be very important

for the overlap of the pump and probe beams. If the beams are not properly collimated, the

overlap of the beams at the sample position may occur at a different position than the focus

of each beam where intensity is maximum. This would decrease the signal size. Optimizing
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the collimation improved the overlap and the signal size.

The second improvement made to the setup is the automation of the neutral

density filter wheels that control the intensity of the pump beam. When we are taking data,

we fix the temperature and record time traces at different intensities. After placements of

the automated nd filter wheels, we can program the computer to take a set of time traces

at different intensities with different averaging times for each intensity. This way, we do

not need to be in the lab to change intensity values after each scan. Since often the low

intensity regime is of interest, studying the intensity dependence can take several hours.

Another improvement that is made to the setup is related to a low temperature

problem that we encountered. One of the cryostats that we used (Oxford Instruments

Microstat) is a cold finger cryostat. In this cryostat, the sample is mounted on a copper

cold finger and is surrounded by vacuum. After cooling down to low temperature, the walls

of the cryostat which are at room temperature begins to outgas. The molecules released

from the room temperature walls stick and condense into cold places inside the cryostat.

Since the sample is also at low temperature, sample surface is coated with this material

slowly.

Reflectivity of the sample decreased to the third of its value after the cool down

over the course of couple hours. Different samples showed different behaviors. For example,

the reflectivity of the silicon did not change appreciably. This suggested that the problem

is not caused by decrease in the sample surface quality. The reason for the change in

reflectivity turns out to be impedance matching of the material (possibly water) condensing

on to our sample. In impedance matching, a layer of film on a sample with a right index of
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refraction and a certain thickness causes the reflectivity of the sample go to zero. Using a

vacuum pump at low temperature did not significantly improve the situation. To solve this

problem we introduced a thin coverslip between the room temperature windows and the

sample. The coverslip attached to the cold finger is also at low temperature. Anything that

comes out of the room temperature windows condenses into this cold window and does not

change the reflectivity. This method completely solved the problem and provided a stable

value of reflectivity for several hours.
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Chapter 3

Recombination of quasiparticles

3.1 Introduction

A special property of the cuprate superconductors is that the energy required for

the creation of a quasiparticle depends on the direction of its momentum [47]. The creation

energy is zero for momenta in the ’nodal’ direction, oriented at 45◦ relative to the Cu-

O bond. The most energetically expensive quasiparticles are the ’antinodal’ ones, whose

momenta are nearly parallel to the bond. Because they feel the pairing interaction most

strongly, their properties may hold the key to high-Tc superconductivity. Unfortunately,

their tendency to form strong pairs makes them difficult to study. In thermal equilibrium

the population of quasiparticles is overwhelmingly dominated by the low energy nodal ones.

As a result, transport measurements performed in equilibrium, such as microwave [26] and

thermal [53] conductivity, are insensitive to antinodal quasiparticles.

A potentially powerful approach to studying the interactions of antinodal quasi-

particles at low temperature is to create a nonthermal population by external excitation. By
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probing the relaxation of the nonthermal population to the ground state, one may hope to

learn about interactions between quasiparticles that would not normally be present at low

temperature. Time-resolved optical techniques are ideally suited to creating a nonequilib-

rium density of quasiparticles and measuring their subsequent relaxation. These techniques

are based on mode-locked lasers that produce pulses of 10-100 fs duration with a wide

range of energy per pulse, center wavelength, and repetition rate. Such measurements are

performed in a ’pump-probe’ mode in which a beam of pulses is split in two. The pump

pulse creates the nonequilibrium state while the probe pulse senses the change in the opti-

cal response of the medium due to the nonequilibrium population. The time delay between

the two pulses is controlled continuously and accurately by varying the optical path length

difference between the two beams. Measuring the transmission or reflection of the probe as

a function of time delay gives information about the return to equilibrium after the pulsed

excitation.

There have been several time-resolved optical measurements performed on the

YBa2Cu3O7−x (YBCO) system of cuprate superconductors. The earliest work [23, 11, 8, 4]

reported the change in the reflectivity (∆R) of a 1.5 eV probe due to photoexcitation at the

same energy. The measurements showed that in the normal state ∆R is small and decays

very rapidly. Upon cooling below Tc, ∆R increases rapidly, and its decay rate decreases.

These results suggested that carrier thermalization and/or recombination proceed rapidly

in the normal state, but are strongly impeded by the opening of the superconducting gap.

Subsequent measurements provided a more detailed picture of the magnitude and

decay rate of ∆R as a function of carrier concentration [10]. In underdoped samples ∆R
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is readily detectable in the normal state. The decay rate slows with cooling, suggesting a

correlation between the relaxation rate of the nonequilibrium state and the appearance of

the pseudogap. It was reported that the relaxation time is insensitive to T in the supercon-

ducting state, with the exception of a peak near Tc. The results were interpreted in terms of

an excited state in which quasiparticles and phonons rapidly reach quasiequilibrium. The

decay rate was conjectured to reflect the thermalization of nonequilibrium phonons.

Recently, measurements of ∆R at 1.5 eV were reported on an untwinned single

crystal of YBa2Cu3O6.5 Ortho II [45]. (The designation Ortho II refers to the macroscopic

ordering of the atomic layer containing the Cu-O chains. In the Ortho II phase the chains

alternate between fully occupied, and entirely unoccupied, by O atoms). In these measure-

ments the range of pump intensity was extended to nearly two orders of magnitude smaller

than used in earlier measurements. It was shown that while the T dependence of the decay

rate is weak when the intensity, I, is large, it becomes extremely strong as I is reduced.

In fact, the decay rate appeared to vanish as T and I both tend to zero. It was suggested

that the strong I dependence of the decay rate is not consistent with a picture in which the

quasiparticles and phonons reach quasiequilibrium and an alternate mechanism involving

the pairwise scattering of quasiparticles was suggested.

In this chapter, we present further measurements and analysis of time-resolved

photoinduced reflectivity in YBCO Ortho II. The experimental apparatus and sample char-

acterization are described in Section 3.2. In Section 3.3 we introduce the Rothwarf-Taylor

(RT) equations, which provide a phenomenological framework for interpreting nonequilib-

rium dynamics in superconductors. Section 3.4 presents measurements of the decay of the
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photoinduced reflectivity as a function of time, temperature, and pump beam intensity. The

essential experimental finding, as in Ref. [45], is that the characteristic decay time diverges

as both T and I approach zero. However, we present several results beyond those already

reported. We present and analyze the time dependence of the transient reflectivity, show-

ing that it is described well by the pairwise scattering of quasiparticles. Second, we report

improved measurements of the asymptotic value of the decay rate in the limit that I goes

to zero. Through improvements in sensitivity we were able to measure γth with more than

one order of magnitude greater precision than previously. Finally, in Section 3.5 we present

analysis and interpretation of the experimental results. We argue that the quasiparticles

that give rise to ∆R are antinodal in character and interpret the decay rate as a measure

of the strength of antinodal quasiparticle interactions.

3.2 Experimental methods

Pump and probe measurements were performed on a mechanically detwinned sin-

gle crystal of YBa2Cu3O6.5 with Tc=45 K. The sample was grown in a BaZrO3 crucible,

which yields material with purity at the 0.99995 level. The high purity allows allows the

development of very long correlation lengths (ξa = 148Å, ξb = 430Å, ξc = 58Å) of Ortho II

order [36], in which the the charge reservoir layer consists of alternating filled and empty

copper oxygen chains. Together with YBa2Cu4O8, it is one of two underdoped cuprate

superconductors in which doping does not introduce disorder. The relative lack of disor-

der is reflected in the low temperature transport properties, which indicate quasiparticle

scattering times in excess of 30 ps [48].
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In our experiments, the pump and probe beams were produced by a mode-locked

Ti:Sapphire laser. The pulses have duration 100 fs, repetition rate 90 MHz, and center

wavelength 800 nm. Both pump and probe beams were focused onto the sample with a 20

cm focal length lens, yielding a spot size of 75 µm diameter. The reflected probe beam was

focused onto a Si photodiode detector.

A double modulation scheme was used to optimize sensitivity to small changes

in the power of the reflected probe beam. In order to minimize the noise from the Si

photodiode detector, a photoelastic modulator was used to modulate the amplitude of the

pump beam at 100 KHz. In addition, a galvanometer-mounted mirror varied the path-

length difference between pump and probe beams at a frequency of 40 Hz. This yields a

rapid scan of the time delay between pump and probe, which helps to suppress noise due

to 1/f fluctuations of the probe beam power. In order to demodulate and extract ∆R as a

function of time delay, the output of the Si photodiode was sent to a lock-in amplifier for

phase-sensitive detection of the 100 KHz component. The output of the lock-in was then

sent to a digital oscilloscope whose time base was triggered synchronously to the oscillating

mirror. With the oscilloscope in averaging mode, a minimum detectable ∆R/R of ≈ 10−7

could be achieved after approximately 10 minutes of accumulation time. More details about

our setup can be found in Chapter 2.

In this study, we focused on the decay rate of ∆R immediately following the pulsed

excitation, or γ(0). For most of the measurements, we determined γ(0) by fitting ∆R(t)

at small time delays by a decaying exponential. However, special considerations arose in

measurements of γ(0) at very low pump power. As described in succeeding sections, γ(0)
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decreases as the pump intensity is lowered. At low temperatures, the decay rate decreases

to the extent that the change in ∆R over the 25 ps time delay range produced by the

oscillating mirror is extremely small. To measure γ(0) in this regime, we switched to a

detection scheme that probes directly the derivative of ∆R with respect to time delay. The

signal from the first lock-in was sent to a second lock-in, rather than the digital oscilloscope,

for phase-sensitive detection at the frequency of the oscillating mirror. When the oscillating

time delay is less than the decay time of ∆R, the output of the second lock-in is proportional

to the derivative d∆R/dt. In this mode of data acquisition we vary the pump-probe delay

by a conventional system of a retroreflector mounted on a translation stage.

When measured at low pump intensity, γ(0) is remarkably sensitive to T , decreas-

ing about an order of magnitude between 15 and 10 K, for example. The extreme sensitivity

to temperature suggests that laser heating can introduce significant error in determining

the T -dependence of γ(0). (By laser heating we refer to the steady-state increase in sample

temperature due to the time-averaged laser power). For the experiments described above,

the pump intensity was lowered below the intensity of the probe. In this regime, the probe

beam is responsible for heating the photoexcited region. At low temperature we can readily

observe that γ(0) varies as the probe intensity, and consequently the sample temperature,

is varied. The obvious remedy of reducing the probe power has the drawback that the ∆R

signal soon disappears below the detector noise level.

Empirically, we found that the optimal compromise between signal-to-noise ratio

and laser heating is obtained at a probe power of approximately 1.2 mW. At this power

level γ(0) can be measured, yet the induced temperature change is significantly less than
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Figure 3.1: Temperature of the photoexcited region of the sample as a function of the bath
temperature, as determined by numerical simulation.

the bath temperature. Determining the dependence of γ(0) on T at this power level requires

that we know the temperature of the photoexcited region of the sample. Unfortunately it is

extremely difficult to measure, with the required accuracy, the temperature of the sample

directly under the focal spot.

Because of this difficulty, we have performed a numerical simulation of the thermal

diffusion equation to estimate the laser-induced temperature change. We input to this

simulation a realistic model for the thermal properties of the sample and its coupling to

the bath. In the experiment, the sample is attached to a sapphire plate using thermal

grease. After mounting, the thickness of the grease layer is determined using an optical
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microscope. The input parameters to the numerical simulation are the thicknesses of the

sample and grease layer, as well as their temperature dependent thermal conductivities

[22, 32, 31]. Figure 3.1 shows the temperature of the photoexcited region as a function of

the bath temperature, as determined by finite-element analysis of the diffusion equation.

In the simulation, the laser power is 1.2 mW, focused to a spot of diameter 75 µm. The

thickness of the sample and thermal grease were 20 µm and 5 µm, respectively. In the

subsequent analysis of the low-pump intensity data, we used the calculated temperature,

rather than the temperature of the thermal bath.

3.3 Background: Rothwarf-Taylor equations and the phonon-

bottleneck

In this section we introduce the Rothwarf-Taylor [44] equations, which provide a

successful phenomenological framework for understanding nonequilibrium dynamics in su-

perconductors [21]. The RT equations are a pair of rate equations that describe a system of

superconducting quasiparticles coupled to phonons. In the RT phenomenology the excited

state is characterized by number densities rather than nonequilibrium energy distribution

functions. This drastic simplification is justified in s-wave superconductors because quasi-

particles rapidly thermalize to a narrow range of energy just above the gap. In d-wave

superconductors the time evolution of the quasiparticle distribution function may be more

complicated. In spite of this, we have found that the RT equations provide an excellent

description of the dynamics of YBCO Ortho II after pulsed photoexcitation. In the final

section we comment on the underlying reasons for the applicability of the RT approach.
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In this work we write the RT equations in the following form,

ṅ = Iqp + 2Nγpc − βn2 (3.1)

Ṅ = Iph + βn2/2 − γpcN − (N − Neq)γesc (3.2)

where n, and N , are the number densities of gap energy quasiparticles and phonons, re-

spectively. The right hand side of Eq. 3.1 expresses the difference between the rates of

quasiparticle creation and annihilation. Iqp is the external generation rate and 2Nγpc is

the rate of pair creation via annihilation of gap energy phonons. The quasiparticle anni-

hilation rate βn2 varies quadratically with density because recombination is a two-particle

scattering event. In Eq. 3.2 the time rate of change of the phonon density is given by the

external phonon creation rate and the same recombination and pair creation terms (with

opposite signs) as in Eq. 3.1. The parameter γesc, which appears in the last term in Eq.

3.2, is the rate at which a gap energy phonons are removed from the interacting system.

This can occur either because of decay into below-gap energy phonons that cannot regener-

ate a quasiparticle pair, or diffusion out of the excited volume. Although for conventional

superconductors the escape process is relatively slow, it is essential for the ultimate return

of the coupled system to equilibrium.

Here we are concerned with the evolution of the system following pulsed excita-

tion. In general, the time evolution depends on the relative magnitude of the three critical

parameters, γesc, γpc, and β. Typically, γesc ¿ γpc, which is the limit where a gap energy

phonon is far more likely to regenerate a quasiparticle pair than to decay into the bath.

In this case the phonon population will increase following photoexcitation until quasiequi-
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librium between phonons and quasiparticles is established. The onset of quasiequilibrium

occurs when the pair creation rate γpcN becomes approximately equal to the recombina-

tion rate βn2. For earlier times, where γpcN ¿ βn2 the quasiparticle population decays

at the density dependent rate βn. However, once quasiequilibrium is established the two

populations are strongly coupled. In this regime N and n both decay at the much slower

rate γesc. The subsequent decay of the quasiparticle population is slow and independent of

density, despite the fact that the rate of quasiparticle scattering may be rapid and density

dependent. The limit on the decay of the nonequilibrium quasiparticle density imposed by

the quasiequilibrium with the phonons is termed the phonon bottleneck.

3.4 Experimental results

3.4.1 Intensity dependence at low temperature

The decay rate of the photoinduced reflectivity in YBCO Ortho II depends strongly

on both the temperature, T , and the pump intensity, I. Fig. 3.2 illustrates the increase of

the decay rate with increasing I at a fixed T=9 K. Each curve, measured using a different I

in the range from 0.5 to 25 mW, has been normalized to the same value at t = 0 to illustrate

the variation in decay rate.

Before analyzing the intensity dependence of the decay rate we return briefly to

the question of laser-induced heating. As we will discuss in detail in Section 3.4.2, the decay

rate measured at fixed pump intensity increases rapidly with temperature. This raises the

concern that the intensity dependence of the decay rate shown in Fig. 3.2 is an artifact

of pump-induced heating. The decisive test is the behavior of the decay rate as the pump
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power is varied from above to below the probe power. In the regime where the pump

power is greater than that of the probe, T increases with I. However, in the regime where

the pump power is less than the probe power, T becomes independent of I. Therefore an

explanation of intensity dependence in terms of heating would predict a crossover to an

I-independent decay rate when the pump power becomes less than that of the probe.

The dashed curve in Fig. 3.2 shows the decay of ∆R when both pump and probe

powers are equal to 2.5 mW. The slowing of the decay rate continues without any sign of

crossover as I is lowered ultimately to 0.5 mW, which is one-fifth of the probe power. Thus

the intensity dependence of the decay rate persists into a regime where I cannot influence

the sample temperature. These data show that the dependence of decay rate on power is

intrinsic and not the result of heating of the sample by the laser. As we have discussed

previously, when the pump intensity increases well above that of the probe the sample

temperature will increase. Ultimately, at high values of I the effects of temperature and

intensity on the decay rate will become mixed. However, all of the quantitative analysis in

this chapter is based on the behavior of the decay rate in the low pump-intensity limit.

The variation in decay rate with excitation density observed in YBCO Ortho II

is highly unusual. Analogous experiments on s-wave superconductors have consistently

found that the decay rate of the nonequilibrium state is independent of the quasiparticle

density [21]. The lack of density dependence is understood as a manifestation of the phonon

bottleneck effect. As discussed in the previous section, the bottleneck sets in when γpcN

reaches approximately βn2. If there is no significant recombination on this time scale, then

only density-independent bottleneck dynamics can be seen.
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Figure 3.2: ∆R/R at T=9 K as a function of time following pulse excitation, for several
pump intensities. All curves were normalized to the same value at delay time zero to
illustrate the variation in initial decay rate. The most rapid decay is seen at the highest
pump intensity, corresponding to 25 mW of laser power focused to spot of diameter 75µm.
The decay becomes systematically slower as the pump intensity is reduced by factors 0.69,
0.44, 0.24, 0.15, 0.10, 0.06, 0.04 and 0.02. The dashed curve (attenuation factor 0.10)
corresponds to a pump intensity equal to that of the probe.

The observation that the decay rate depends on density suggests the absence of

a phonon bottleneck on the time scale of our measurements. In Section 3.5.4 we discuss

in detail under what circumstances this can occur. Briefly, what is required is that the

rate γpcN remains smaller than βn2. This can happen in either one of two regimes. In the

first regime, γpc is very small on the scale of maximum quasiparticle recombination rate

βN(0)∆. In this case, the quasiparticle density will decay to a small fraction of its initial
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value before steady-state equilibrium is reached. In the second regime, the hierarchy of

pair creation and escape rates is reversed, such that γpc ¿ γesc. In this case the phonon

population is drained off before a quasi-steady state with the electronic excitations can be

achieved.

If, in fact, the decays that we observe are free of phonon bottleneck effects, the

measured rates provide direct information about the size of the coefficient β. This in turn

offers a window into the nature of quasiparticle-quasiparticle scattering. To test whether

our measurements of YBCO Ortho II are in a non-bottleneck regime, we have analyzed the

time-dependence of the decay of ∆R. Fig. 3.3 is a double log plot of ∆R as a function of time

delay, for several pump intensities. At the highest excitation density ∆R decays as a power

law for t > 3 ps. With decreasing excitation density the onset of power law decay shifts

to longer times. At the lowest intensity the crossover time is greater than the maximum

time delay in this set of measurements, which is ∼25 ps. We compare these curves with the

predictions of the RT equations in the parameter regime in which the quasiparticles and

phonons remain out of equilibrium. The RT equations are clarified if the total quasiparticle

population is written as nph + nth, where nph and nth are the photoinduced and thermal

equilibrium quasiparticle density, respectively. Similarly, we define Nph and Nth as the

photoinduced and thermal equilibrium phonon populations. Detailed balance relates the

thermal densities of phonons and quasiparticles such that 2Nthγpc = βn2
th. Substituting the

above relation into Eq. 3.1 yields a rate equation for nph,

ṅph = Iqp − βn2
ph − 2βnthnph + 2γpcNph. (3.3)



31

Figure 3.3: ∆R/R vs. time delay at T=9K plotted on a double logarithmic scale, for pump
laser powers (in mW) 0.1, 0.2, 0.4, 0.6, 1.0, 1.5, 2.4, 3.8, 6.0.

If either condition γpc ¿ βN(0)∆ or γpc ¿ γesc is satisfied, the last term in Eq. 3.3 may

be ignored, which leads to decoupling of the two RT equations. The resulting rate equation

for the quasiparticles,

ṅph = Iqp − βn2
ph − 2βnthnph, (3.4)

becomes equivalent to the rate equation applicable to nonequilibrium electrons and holes in

semiconductors, and has been studied extensively in connection with photoconductivity [5].

If nth vanishes as T approaches zero, then the rate equation approaches ṅph = Iph − βn2
ph.
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At low T the quasiparticles obey simple second order, or bimolecular, reaction kinetics.

Integration yields the decay after pulsed excitation,

nph(t) =
nph(0)

[1 + βnph(0)t]
. (3.5)

Eq. 3.5 predicts that the excited population approaches 1/βt for t À 1/βnph(0),

regardless of the initial quasiparticle density. However, as is clear from Fig. 3.3, the

measured decay curves do not obey this prediction. At long times the decay is closer to

t−0.8 than t−1, and curves for different intensities do not merge to a single curve at long

times.

The discrepancies described above can be traced to a complication omitted from

the preceding analysis. Because the intensity of the pump beam decreases exponentially

with increasing depth below the sample surface, z, the local quasiparticle density, nph(z, t),

is spatially nonuniform. The initial local density nph(z, 0), equals nph(0, 0)e−αz, where

α is the absorption coefficient at the pump wavelength. Assuming negligible diffusion of

excitations in the z direction, the local excitation density decays as,

nph(z, t) =
nph(z, 0)

[1 + βnph(z, 0)t]
. (3.6)

The probe beam, whose change in reflectivity measures the excited quasiparticle

density, also decays exponentially in the sample. Therefore the measured reflectivity change

is related to an exponentially weighted average of the nonequilibrium quasiparticle density,

N (t) ≡ α−1
∫ ∞

0
dze−αznph(z, 0)/[1 + βnph(z, 0)t]. (3.7)

Assuming that the change in reflectivity is proportional to N finally yields,
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∆R(t) =
2∆R(0)

γ0t
[1 −

ln(1 + γ0t)

γ0t
], (3.8)

where γ0 ≡ βnph(0, 0).

The solid lines in Fig. 3.3 indicate the best fit of Eq. 3.8 to the experimental data.

The fit is obtained by varying ∆R(0) and γ0 for each curve. There is excellent agreement

between the data and the prediction of the bimolecular rate equation when the exponential

variation of the pump and probe intensities is taken into account. The agreement suggests

that for t < 25 ps, the phonon bottleneck is not established and the decay rate of ∆R is a

direct measure of the quasiparticle-quasiparticle scattering rate.

From the fitting procedure we determine ∆R(0) and γ0 for each curve. In Fig. 3.4

we plot γ0 as a function of ∆R(0)/R. It is evident that the characteristic decay rate in-

creases linearly with the magnitude of the initial reflectivity change. The linear relationship

indicates that the entire family of decay curves can be described by a single bimolecular

coefficient β.

3.4.2 Temperature dependence

In the previous section we showed that the decay of ∆R at low temperature can be

described by the bimolecular rate equation with a single value of the scattering coefficient β.

In this section we analyze the effect of raising the temperature on the rate of decay of ∆R.

Fig. 3.5 shows a set of normalized decay curves of ∆R, measured in the temperature range

from 5-70 K, induced by a pump power of 2.5 mW. The set of curves illustrates clearly that

the decay rate at fixed I increases rapidly with increasing T .
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Figure 3.4: The initial decay rate at the sample surface, γ0, as a function of the initial
reflectivity change, ∆R(0)/R. The dashed line emphasizes the linear dependence of initial
decay rate on initial density.

To analyze the T dependence, we again consider the RT equation in the decoupled

regime (Eq. 3.4). At nonzero T we must include the last term on the right-hand side,

which was neglected previously. Physically, this term describes the rate of scattering of a

photoinjected quasiparticle by a thermal equilibrium one.

We have found that the most direct way to compare the data with Eq. 3.4 is to

focus on the initial decay rate, γ(0), of the experimentally measured transients. Here γ(0)

is defined as the limit of the instantaneous decay rate γ(t) ≡ −ṅph/nph as t approaches

zero. According to Eq. 3.4, γ(0) = β [nph(0) + 2nth]. Assuming that the initial reflectivity

change is proportional to nph(0), a plot of γ(0) vs. ∆R(0) should yield a straight line with
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Figure 3.5: ∆R/R induced by 2.5 mW of laser power, as a function of time following pulse
excitation, for several temperatures in the range from 5-70 K. All curves were normalized
to the same value at delay time zero to illustrate the variation in initial decay rate. The
decay is most rapid at the highest temperature, and becomes systematically slower as T is
reduced from 70 K to 50 K, 44 K, 28 K, 22 K, 17 K, 12 K, and 5 K.

slope proportional to β and intercept 2βnth.

Fig. 3.6 shows γ(0) plotted as a function of ∆R(0)/R for several temperatures in

the superconducting state. The data at the lowest temperature are essentially equivalent to

the results presented earlier. In Fig. 3.4 the decay rate was determined by fitting the entire

time dependence, while in Fig. 3.6 the decay rate is determined from the initial slope. The

reason the decay rates in the two figures differ by a factor of two can be understood from

Eq. 3.8. Taking the derivative of this formula with respect to time shows that γ(0) = γ0/2.

With increasing T the γ(0) vs. ∆R(0) plots shift vertically, with little change
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Figure 3.6: Initial decay rate, γ(0), as a function of initial reflectivity change, ∆R(0)/R,
for T=12 K, 17 K, 22 K, and 30 K. The thermal equilibrium decay rate, obtained from
extrapolation of the data to zero ∆R(0)/R increases rapidly with temperature.

in slope. The fact that the slope is nearly constant implies that β depends weakly, if at

all, on the temperature. The increase of the intercept with T implies a rapidly increasing

density of thermal equilibrium excitations. In the next section we examine the temperature

dependence of the intercepts, as determined from measurements performed at very low

pump and probe intensities.

Fig. 3.7 presents a different perspective of the decay rate as a function of tem-

perature and intensity: γ(0) as a function of T for three values of I. In the normal state

and just below Tc the different data sets lie on the same curve, indicating that γ(0) is

independent of I. As the temperature is lowered below Tc the decay rates measured with
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different pump intensities begin to diverge. As the temperature tends to zero, the decay rate

crosses over to a temperature independent regime, with the crossover temperature higher

when the rates are measured at greater pump intensity. A consistent explanation for the T

and I dependence of γ(0) can be found in the picture of pairwise scattering involving both

thermal equilibrium and photoinduced quasiparticles. The lack of intensity dependence

above Tc suggests that in this regime the thermal density of quasiparticles is far larger than

the photoinduced density. The strong temperature dependence above Tc suggests that nth

decreases with decreasing temperature in the normal state, possibly due to the opening of

the pseudogap. The onset of intensity dependence at Tc may indicate that nth has become

comparable to nph. Alternatively, the sudden change in decay kinetics may be related to

the onset of the coherence in the antinodal quasiparticle self-energy. Finally, the decay rate

measured at fixed pump intensity crosses over to T -independence when nth becomes much

smaller than nph(T ). The overall behavior of γ(0) suggests that the decay rate vanishes in

the limit that both I and T go to zero.

3.4.3 Low intensity regime

In this section we focus on measurements of γ(0) performed at the lowest laser in-

tensities that are accessible experimentally. The motivation for studying the low-intensity

regime is to measure, via a nonequilibrium experiment, the recombination lifetime of quasi-

particles in equilibrium. In order to probe equilibrium properties, the density perturbation

introduced by the laser must be small, such that nph ¿ nth. According to Eq. 3.4, γ(0) ap-

proaches 2βnth in this limit, which is exactly twice the thermal equilibrium recombination

rate, γth.
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Figure 3.7: Initial decay rate, γ(0), as a function of T for three values of pump power.

Measuring γth accurately becomes increasingly difficult at low temperature be-

cause of the requirement that nph ¿ nth. As nth decreases rapidly with decreasing T ,

the pump intensity must be lowered accordingly. Eventually ∆R reaches the noise floor of

the experiment, which sets a limit on the smallest γth that can be measured. In principle,

the signal size could be increased by raising the intensity of the probe beam. However,

this inevitably leads to an increase in the average temperature of the photoexcited region

compared with the bath temperature. This problem becomes increasingly severe at low

temperature, where the thermal conductivity of the sample is small. For the data to be

presented, the probe intensity was maintained at 1.2 mW, a value which provides the best

compromise between sensitivity and heating.
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At each T , we obtain 2γth from the extrapolation to zero of a linear fit to γ(0)

vs. ∆R. The temperature of the photoexcited region is determined through the numerical

analysis described in Section 3.2. Fig. 3.8 is a double logarithmic plot of 2γth as a function

of T , showing results for both YBCO Ortho II and a thin film sample of Bi2Sr2CaCu2O8

(BSCCO) [46]. At the upper limit of the T range, γth is nearly identical in the two materials.

However, as mentioned previously, the dependence of γth on T becomes very strong in YBCO

Ortho II at low temperature. If the functional form was assumed to be a power law, then

γth would approach a T 8 dependence.

We believe it to be more reasonable to assume that γth in YBCO Ortho II decreases

exponentially at low temperature. To analyze this exponential dependence, we compare the

data with the formula,

2γth(T ) =
kBT

h̄

T

T0
exp [−∆th(T )/kBT ] . (3.9)

We introduce a prefactor proportional to T 2 for two reasons, one theoretical and the other

experimental. The theoretical reason is that nth(T ) is predicted to vary as T 2 for a d-

wave superconductor. The experimental reason is that in some samples of BSCCO γth is

proportional to T 2 over the temperature range from 10 K to 40 K [46]. (The dashed line

in Fig. 3.8 indicates a T 2 dependence). Fitting Eq. 3.9 to the YBCO Ortho II data yields

T0 = 1100 K and a temperature dependent activation energy ∆th that is plotted in the inset.

The origin of the exponential cutoff in γth that appears in YBCO Ortho II and not in BSCCO

is not understood at present. However, we note that analogous behavior is observed in the

scattering rates observed by ac conductivity experiments. In the YBCO system, the mean
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Figure 3.8: Twice the thermal equilibrium recombination rate, as determined by the extrap-
olation of γ(0) to zero laser power, as a function of temperature. Solid squares are results
for the YBCO Ortho II sample, open circles show results obtained on a thin film sample of
BSCCO with Tc= 85 K. The dashed line indicates a temperature dependence proportional
to T 2. The inset shows the activation energy of the recombination rate in YBCO Ortho II
as determined from a fit to Eq. 3.9.

free path increases exponentially with temperature towards a limit of several microns set by

elastic processes [48]. In BSCCO the T dependence is much weaker and the limiting value

is only a few hundred Å [9]. It is possible that momentum conservation imposes constraints

on the rate of quasiparticle-quasiparticle scattering in the cleaner YBCO system. These

constraints may dictate that only Umklapp processes are allowed at low T , leading to an

exponential T dependence [52, 27].
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3.5 Discussion

In analyzing the experimental data presented above, we begin (in Section 3.5.1)

with the most basic question: what type of excitation is probed by transient reflectivity

experiments performed on the cuprate superconductors? We argue that these excitations

are quasiparticles that occupy states close to the antinodal regions of the Brillouin zone. In

Sections 3.5.2 and 3.5.3 we turn to a quantitative analysis of the decay rate of the photoex-

cited state. Section 3.5.2 focuses on our observation that the lifetime of a photoinjected

quasiparticle diverges in the limit that T and I both tend to zero. We show theoretically

that the constraints of momentum and energy conservation prevent thermalization of antin-

odal quasiparticles toward the nodes. In Section 3.5.3 we estimate the magnitude of the

recombination coefficient β from the experimental data, and discuss its theoretical inter-

pretation. Finally, in Section 3.5.4, we comment on possible reasons for the absence of a

phonon bottleneck in the decay of the photoexcited state.

3.5.1 What types of excitations are probed?

As a first guess, one might imagine that the photoinduced quasiparticles occupy

states near the nodes, as these are the lowest energy excitations. This intuition is consis-

tent with the generally accepted picture of the quasiparticle distribution function in the

nonequilibrium state. In this picture the nonequilibrium quasiparticles rapidly adopt a

Fermi-Dirac distribution, but with a chemical potential, and temperature, µ∗, and T ∗, re-

spectively, that are larger than their values in thermal equilibrium [42, 41]. In a d-wave

superconductor this distribution describes a population of quasiparticles that is dominated



42

by states near the nodes (’nodal’ quasiparticles). The occupation of states with energy

greater than max(µ∗, T ∗) is exponentially small.

On the other hand, the experimental evidence suggests that the photoexcited state

is not a degenerate gas of nodal quasiparticles. Three observations, in particular, lead us

to this conclusion:

(1) The diffusion coefficient of photoinjected quasiparticles is at least two orders of

magnitude smaller than the diffusion coefficient of nodal quasiparticles [16]. The diffusive

propagation of nonequilibrium quasiparticles in YBCO Ortho II was recently measured by

the transient grating technique. Values for the diffusion coefficient of 20 cm2/s and 24 cm2/s

were determined for motion along the a and b crystalline axes, respectively. This may be

compared with a nodal quasiparticle diffusion coefficient of ≈ 6000 cm2/s as determined

from microwave spectroscopy on the same sample [48].

(2) The reduction in the condensate spectral weight depends linearly on the pump

intensity. Information about the photoinduced reduction of condensate spectral weight

comes from visible pump-terahertz probe experiments [2]. At frequencies ∼1 THz, the

optical conductivity σ(ω) is dominated by its imaginary part, σ2, which is proportional

to the condensate density. Following photoexcitation at 1.5 eV, σ2 drops rapidly as the

condensate density is diminished. At intensities below the saturation level, the loss of

condensate density is a linear function of the energy deposited in the photoexcited volume.

The linear reduction of condensate density with pump energy is inconsistent with

the physics of nodal quasiparticles. This point can be illustrated by considering the tem-

perature dependence of the superfluid density, ρs. Nodal quasiparticles are responsible for
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the linear in T decrease of ρs observed in clean cuprate superconductors [24]. However,

the energy stored in the nodal quasiparticle gas increases not as T , but as T 3. Therefore

the reduction in ρs due to nodal quasiparticles varies as the one-third power of the total

energy in the quasiparticle gas. We would expect such a strongly sublinear relationship for

a degenerate gas of nonequilibrium nodal quasiparticles as well.

(3) Far-IR measurements of the photoexcited state show that the optical spectral

weight that is removed from the condensate by photoexcitation shifts to energies on the

order of 50-100 meV, or several times the value of the maximum gap [29]. As discussed

above, thermal excitation of nodal quasiparticles does indeed remove spectral weight from

the condensate. However, the spectral weight shifts to a very narrow (<30µeV) Drude

peak centered on ω = 0. In contrast, the spectral weight removed from the condensate

by photoexcitation shifts to frequencies that are ≈1000 times higher than the width of the

nodal quasiparticle Drude peak. This is further evidence against a degenerate gas of nodal

quasiparticles.

On the basis of the preceding arguments, we conclude that nodal quasiparticles do

not dominate the population of quasiparticles created by photoexcitation. In other words,

the quasiparticle distribution in the photoexcited state cannot be described as a Fermi-

Dirac function with effective parameters µ∗ and T ∗. The experiments are more consistent

with a distribution function that is peaked at an energy above the chemical potential. Such

a distribution can arise if it is not possible to scatter into the the nodal states during the

lifetime of the photoexcited state. In Section 3.5.2 we show that the constraints of energy

and momentum conservation severely restrict the rate at which hot quasiparticles scatter
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into states near the nodes.

3.5.2 Stability of an isolated photoexcited particle

In section 3.5.1, we argued that the quasiparticle distribution function in the pho-

toexcited state peaks at an energy above the chemical potential and therefore is not of the

Fermi-Dirac form. Such a nonequilibrium distribution can arise if quasiparticles cannot

scatter into nodal states during the lifetime of the photoexcited state. However, we have

also shown that this lifetime can be very long, reaching ∼ 0.6 ns at the lowest temperature

and intensity accessible experimentally. By comparison a 30 meV excitation in a Fermi

liquid (with Fermi energy ∼ 1 eV) would decay into electron-hole pairs in ∼3 ps. In the fol-

lowing we describe how the relative stability of a quasiparticle in a d-wave superconductor

can arise from the severely restricted phase space for decay.

In a Fermi liquid, quasiparticles readily decay into particle-hole pairs because

energy and momentum can be conserved in the process. However, the kinematic constraints

are much more severe in the case of a d-wave superconductor. Consider the momentum-

resolved particle-hole excitation spectrum in the two cases. In the Fermi liquid the particle-

hole spectrum forms a broad continuum that extends from zero wavevector to twice kF ,

even as the pair energy tends to zero.

The d-wave superconductor differs from the Fermi liquid in that the Fermi contour

shrinks to four nodal points. As a consequence, the two-particle excitation spectrum is much

more localized in momentum space. Fig. 3.9 illustrates the momentum-resolved two-particle

excitation spectrum of a d-wave superconductor. Each plot is a color-scale depiction of the

density of two-particle excitations of a given energy in the first Brillouin zone. The spectra
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were calculated using a parameterization of the quasiparticle dispersion obtained by Norman

[40] from a fit to ARPES data. The value of the maximum gap ∆0 was arbitrarily set to

50 meV. The conclusions we reach based on the simulation do not depend on the chosen

value for ∆0. At very low energies, the two-particle spectrum is localized near nine discrete

wavevectors that represent the creation of particles at the nodes. As the energy of the pair

increases, the locus of possible wavevectors spreads out. However, for energies that are less

than ∆0, the allowed momenta remain clustered near the nine zero-energy wavevectors.

In order for a single quasiparticle to scatter and emit a pair of additional quasi-

particles, its change in energy and momentum, ∆ε and ∆k, must match that of the pair,

εpair and kpair. The constraints imposed by this condition are illustrated in the diagrams

shown in Fig. 3.10, which describe the possible decay events of a hot quasiparticle. For

this example we have chosen a quasiparticle with energy 40 meV and momentum on the

Fermi contour of the normal state. Each diagram corresponds to a fixed energy transfer

in the scattering event. The color scale indicates the location of allowed values of ∆k and

kpair at the transfer energy. A scattering event is kinematically allowed only at momentum

transfers where the two sets of wavevectors overlap.

Fig. 3.10 illustrates how kinematics prevent the inelastic scattering of the hot

quasiparticle. For example, consider the scattering events with the largest possible energy

change, 40 meV. To give up all its energy the hot quasiparticle must scatter to one of the

nodes, thus there are only four allowed values of ∆k. (The four points are not visible in Fig.

3.10(a)). One of these four wavevectors just touches the perimeter of the elliptical region

of pair wavevectors, which indicates an allowed scattering event. In this scattering event
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Figure 3.9: Color scale depiction of quasiparticle pair momenta in the first Brillouin zone
for different values of the two-particle energy; (a) 10 meV, (b) 20 meV, (c) 30 meV, (d) 40
meV, (e) 50 meV, and (f) 60 meV. The value of the gap parameter ∆0 is 50 meV.

the hot quasiparticle scatters to the node, with the simultaneous creation of a quasihole at

the node and a quasiparticle at the energy and momentum of the hot quasiparticle. This

exchange process, although kinematically allowed, does not lead to a change in the particle

distribution function.

If the hot quasiparticle does not lose all of its energy, there are more choices for the

final momentum. The locus of allowed ∆k expands, becoming visible as arcs in panels (b)

through (e) of Fig. 3.10. However, as the arcs expand the locus of pair creation wavevectors

shrinks. Fig. 3.10 shows that the region of allowed kpair shrinks faster than the expansion of

allowed ∆k, so that the two regions fail to overlap at any energy transfer less than the energy

of the hot quasiparticle. The absence of overlap demonstrates that the thermalization of
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Figure 3.10: Depiction of the lack of overlap between the scattering momentum ∆k and the
pair momentum kpair. For this illustration the hot quasiparticle starts with energy 40 meV
and momentum on the Fermi contour of the normal state. The arc segments in each square
show the possible values of ∆k for several values of the scattering energy ∆ε: (a) 40 meV;
(b) 30 meV; (c) 20 meV; (d) 10 meV; (e) 5 meV. The color scale plot in each of the squares
shows the allowed values of kpair at the same energy. As the energy transfer decreases
and the arc segments expand, the regions of kpair shrink faster. The lack of overlap is a
graphical demonstration of how momentum and energy conservation prevent thermalization
of a quasiparticle near the antinodal region of the Brillouin zone.

the hot quasiparticle is forbidden because of kinematic constraints. Recently, Howell et al.

[27] reached a similar conclusion based on an analytical, rather than numerical, approach.

The kinematic constraints in this example are specific to quasiparticles near the

normal state Fermi contour. They are a consequence of the rapid decrease of quasiparticle

velocity with increasing distance from the node. For this reason, we anticipate that not all

quasiparticles of a given energy will be stable. The contours of constant quasiparticle energy

are distorted ellipses centered on each of the nodes. Quasiparticles near the major axis
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vertex of the ellipse will be stable, as we have seen. However, the velocity for particles near

the minor axis vertex is comparable the nodal quasiparticle velocity. For these quasiparticles

there are no kinematic constraints to prevent rapid thermalization. Thus, we anticipate that

after a short time following pulsed injection only nonequilibrium particles near the major

axis vertex will survive.

3.5.3 Bimolecular recombination

Estimating β

In the previous section we have seen that kinematic constraints can stabilize an

isolated antinodal quasiparticle. However, our experiments show that a pair of quasiparti-

cles can convert to a state which no longer contributes to ∆R. We can be confident that this

conversion requires two particles, and not more, because the decay rate increases linearly

with density. The coefficient that relates the decay rate to the density, β, is directly related

to the cross-section for inelastic scattering of two quasiparticles. Thus the magnitude of β

is of fundamental importance as a measure of the coupling of quasiparticles to some other

excitation of the interacting electronic system.

We turn next to estimating β from the measured dependence of the decay rate

on density. Experimentally, we measure both the nonequilibrium decay rate βnph and the

thermal equilibrium rate βnth. To extract β from these measurements, we need to know

either nph or nth. Unfortunately, neither quantity is directly determined from the data,

and we need additional assumptions to estimate these quantities. To estimate nph we use

energy conservation to convert from laser energy density to quasiparticle density. In the
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linear regime of γ vs. I a recombination rate of 1011 s−1 results from a laser energy density

of 0.1 J-cm−3. If photon energy is converted entirely to 40 meV quasiparticles, then their

initial density is ≈ 1012 cm−2, and therefore β ≈ 0.1 cm2/s.

We can also determine β from the thermal equilibrium recombination rate as well,

if we know nth(T ). For a d-wave superconductor,

nth(T ) =
πvF

6v2

(

kBT

h̄vF

)2

, (3.10)

where vF and v2 are the nodal quasiparticle velocities perpendicular and parallel to the

Fermi contour, respectively [7]. Based on the RT equations, we would expect the thermal

equilibrium decay rate to be proportional to nth and thus vary with temperature as T 2.

Instead, we find experimentally that in YBCO Ortho II the limiting behavior of γth is ex-

ponential rather than power law. The exponential term in the recombination rate suggests

that the near-zero energy quasiparticles are not recombining effectively with photoinduced

quasiparticles. On the other hand, it is clear that the thermal quasiparticles that do par-

ticipate need not be antinodal in character because the activation energy of nth(T ) is less

that one-tenth of the maximum gap value of about 40 meV. The unexpected exponential

cutoff of the recombination rate may indicate that only nodal quasiparticles that exceed a

small energy, of order a few meV, can participate in recombination. The physics may be

related to the small Umklapp scattering gap seen in the momentum scattering rate of nodal

quasiparticles [26].

Despite the exponential cut-off of the recombination rate at low T , we can attempt

to estimate β from the thermal recombination rate at higher T . Above ≈ 20 K, γth(T ) is
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not inconsistent with a quadratic dependence on temperature. In that range we found

that 2γth(T ) ≈ (kBT/h̄)T/T0, with T0 =1100 K. Assuming that γth = βnth, and using

Eq. 3.10 to estimate nth(T ) (with vF /v2 = 10) we find β = 0.26 cm2/s. Considering the

approximations and assumptions involved, this value is quite close to the one determined

from the nonequilibrium recombination rate.

Theoretical approaches for β

Within the context of BCS theory, the process of recombination is the annihilation

of a quasiparticle pair with the simultaneous emission of a gap energy phonon. The theory

of the recombination rate of BCS quasiparticles was developed by Kaplan et al. [30], whose

calculations assumed an isotropic s-wave gap and the breaking of momentum conservation

through strong elastic scattering (’dirty limit’). Their result for the recombination rate, ex-

pressed through our definition of recombination coefficient, is β = 4πα2(2∆)F (2∆)/h̄N(0),

where α, F , and N , are the electron-phonon coupling strength, density of phonon states,

and density of electron states, respectively. While it is very useful to have this explicit result

to compare with, we must bear in mind that the cuprate superconductors do not satisfy

the assumptions upon which this calculation is based. The cuprates are 2D rather than

3D, d-wave rather than s-wave, and are in the clean, rather than the dirty, limit of elastic

scattering.

We are not aware of a calculation of the phonon-mediated recombination rate

applicable to the cuprate superconductors. However, in anticipation of such a calculation,

we define a dimensionless constant C ≡ h̄βN(0), that parametrizes the electron-phonon

coupling strength in the clean limit. If in addition we express the 2D electronic density
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of states through an effective mass m∗, then we obtain the simple formula β = Ch̄/m∗.

Assuming an effective mass that is three times the free electron mass, h̄/m∗ = 0.3 cm2/s,

so that β = 0.1 cm2/s corresponds to C ≈ 1/3. It is striking that C is of order unity.

This suggests that, while we do not know if phonon emission is indeed the mechanism for

quasiparticle recombination, we have identified h̄/m∗ as the ’natural unit’ for β.

The body of experimental results on the cuprate superconductors have led many

researchers to conclude that quasiparticle scattering is determined by electron-electron,

rather than electron-phonon interactions. The BCS theory of recombination was adapted

by Quinlan et al. [43] to the case where quasiparticle-pair energy is converted to antifer-

romagnetic spin fluctuations, rather than phonons. As we explain below, the results of

this calculation cannot be compared directly with β. The recombination rate at low T is

predicted to vary as T 3. Therefore γth is not proportional to nth, which, as we have seen,

varies as T 2. Expressed in the language of this thesis, β vanishes in the limit that T goes

to zero, in contrast to the T -independent value observed experimentally.

The prediction that γ ∝ T 3 while nth ∝ T 2 is a reflection of the underlying Fermi

liquid theory (FLT). In FLT the normal state scattering rate varies as T 2, while the thermal

quasiparticle density varies as T . The corresponding quantities vary as one higher power

of T for the d-wave superconductor because its density of states is linear in energy, rather

than contant. Thus it is a general consequence of the phase space of Fermi liquids that the

quasiparticle scattering rate is not simply proportional the quasiparticle density.

It is interesting, and perhaps relevant, to recall here the celebrated fact that the

high-Tc cuprates violate this central prediction of FLT. That is to say, the normal state scat-
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tering rate varies linearly, rather than quadratically, with the temperature. In this marginal

Fermi liquid (MFL) [50], the scattering rate ∼ 2kBT/h̄ is proportional to the quasiparticle

density N(0)kBT . The coefficient of proportionality, or βMFL, is simply h̄/πm∗. Evalu-

ating this expression with m∗ = 3m0 yields βMFL=0.1 cm2/s, which is remarkably close

to the experimental value. This agreement suggests that there may be a close connection

between the quasiparticle scattering in the normal state and the antinodal quasiparticle

recombination in the superconducting state.

3.5.4 Absence of phonon bottleneck

In the previous section we described two mechanisms for quasiparticle pair recom-

bination. In the more familiar one, the pair is destroyed with simultaneous creation of a

2∆ phonon. In the second mechanism the pair is converted to an electronic excitation,

such as an antiferromagnetic fluctuation. Both mechanisms can provide an explanation for

the absence of a bottleneck. In the second mechanism, the quasiparticle pair decays to

other particle-hole excitations. If the number of particles generated in the pair-destruction

process is two or more, then it is highly unlikely for the reverse process to occur. The low

rate for the reverse process leads to the absence of a bottleneck.

On the other hand, phonon-mediated recombination is inherently susceptible to a

bottleneck because only one particle (the phonon) is created when the pair is destroyed.

Previously, we suggested that there are two parameter regimes in which the bottleneck

would be avoided; γpc ¿ βN(0)∆ or γpc ¿ γesc. The absence of a bottleneck in the latter

case is supported by an analytical solution, provided by Gray [20], of the RT equations in

the linear regime (nph ¿ nth). At low temperatures, where we may expect γth ¿ γpc, the
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excess quasiparticle population decays with lifetime τ ≈ (1+γpc/γesc)/2γth. The analytical

solution shows that τ is a direct measure of γth, when γpc/γesc → 0.

The RT equations have not been solved analytically in the nonlinear regime where

nph À nth. However, we can use general arguments to quantify the conditions necessary for

decay of the excited population to reflect the underlying quasiparticle recombination rate.

First we analyze the case where γpc ¿ βN(0)∆. Following pulsed injection, the bottleneck

sets in when the pair destruction and creation rates become equal, or βn2
ss = 2γpcNss,

where nss and Nss are the quasiequilibrium steady-state densities of quasiparticles and 2∆

phonons, respectively. The size of nss relative to the initial density n0 is a measure of the

strength of the bottleneck. In the weak bottleneck regime, where nss is much less than n0,

the density decays to a small fraction of initial value before the onset of quasiequilibrium.

The ratio nss/n0 can be calculated using conservation of energy, which implies

that 2nss + Nss = 2n0. The result is

nss

n0
=

λ

2
(

√

1 +
4

λ
− 1), (3.11)

where λ ≡ 2γpc/βn0. The weak bottleneck regime corresponds to λ ¿ 1, in which case the

steady state density is very small, nss/n0 ≈ λ1/2. In the strong bottleneck regime, λ À 1,

the steady state density nearly equals the initial density, nss/n0 ≈ 1 − 1/λ.

To determine whether the cuprates are in the strong or weak bottleneck regime,

we must estimate the magnitude of λ. To do so we first recognize that λ must exceed a

λmin, obtained by setting n0 equal to N(0)∆, the maximum quasiparticle density in the

superconducting state. We can evaluate λmin in the dirty s-wave case, as Kaplan et al.
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[30] have calculated γpc as well as β in this regime. The characteristic phonon decay rate

is given by γpc = 4π2N(0)α2∆/h̄N , where N is the number density of ions. Given this

phonon decay rate, we find that

λmin =
2π

h̄

N(0)

NF (2∆)
. (3.12)

The simplicity of this result is a consequence of detailed balance in the dirty-limit. Eq.

3.12 shows that the strength of the bottleneck is determined by the ratio of the electron

density of states at the Fermi level to the phonon density of states at 2∆. It is clear that the

high-Tc cuprates can be in the weak bottleneck regime, where λ is very small, in contrast

with conventional low-Tc superconductors. In the high-Tc materials the gap energy is large,

and 2∆ coincides with large phonon density of states peaks associated with optic phonons.

Furthermore, the density of states at the Fermi level is small compared with conventional

metals. Both factors favor small λ. In contrast, in conventional superconductors phonons

with energy 2∆ lie in the low-energy tail of the acoustic spectrum. Therefore the density

of resonant phonon states is small. This fact, together with the large electronic density of

states, place conventional superconductors in the strong bottleneck regime.

The second regime where the bottleneck is avoided is γpc ¿ γesc. In this case

quasiequilibrium is never achieved because phonons are rapidly removed before they can

break pairs. Following pulsed photoexcitation Nph, the nonequilibrium phonon density

increases from zero, reaches a maximum, and then decays rapidly. The peak value of Nph,

or Nph,max, can be estimated by setting Ṅ = 0 in Eq. 3.2. In the limit that γpc ¿ γesc, this

yields Nph,max = βn2
ph/2γesc. If this value is then substituted back into Eq. 3.1, we see that
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the maximum value of the pair creation rate is βn2
phγpc/γesc. This term corresponds to a

fractional correction to the decay rate equal to γpc/γesc. This mechanism for avoiding the

bottleneck is also quite plausible in the cuprate superconductors, where 2∆ phonons have

very high energy ≈ 60 meV and therefore may have short lifetimes.

3.6 Summary

The most significant observation reported here is the strong dependence of the

decay rate of the transient reflectivity on both temperature and pump laser intensity. At

low T the decay rate is a linear function of I. At low I the decay rate decreases exponentially

with decreasing T . At the lowest values of T and I probed by our experiments, the lifetime

of the photoexcited state becomes extremely long, ≈ 600 ps. There is no indication that

the lifetime would not continue to increase if the experiment could access lower values of T

and I.

In our analysis of the data, we first addressed the nature of the excitations probed

by measuring ∆R. We presented arguments that ∆R is proportional to the density of high-

energy or antinodal quasiparticles created by the laser excitation. We explained theoretically

why such particles, although not the lowest energy excitations, could be highly metastable

at low temperature and density. The metastability is a consequence of the limited phase

space for decay of high-energy quasiparticles to the nodal regions of the Brillouin zone. As

the phase space restrictions rely on momentum conservation, the degree of metastability

may be expected to be highly sensitive to disorder.

Having understood the stability of an isolated quasiparticle, we sought a quantita-
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tive understanding of the decay process that occurs when a pair of quasiparticles interact.

We estimated the magnitude of the recombination coefficient, β, from both the T and I

dependence of the decay rate. We emphasized that β is a direct measure of the strength

of quasiparticle interactions. In addressing the theoretical approaches to the recombination

rate, we identified h̄/m∗ as the natural unit for β in a two-dimensional superconductor. We

pointed out that while recombination is assumed to be phonon-mediated in conventional

superconductors, electron-electron mediated processes must be considered as well in the

cuprates. In the context of phonon-mediated processes, we discussed the need to extend

the work of Kaplan et al. [30] to the 2D, clean limit that is applicable to the cuprates. In the

electron-electron mediated case, more work is needed to understand the underlying recombi-

nation process. As a motivating factor, we pointed out the remarkable coincidence between

the normal state scattering rate and the superconducting state recombination rate. We

showed that both processes have the same dependence on the quasiparticle density, which

can be described by an interaction coefficient equal to h̄/πm∗.
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Chapter 4

Doping dependence in BSCCO

system

4.1 Introduction

Rapid developments in time-resolved optical spectroscopy have led to renewed in-

terest in the nonequilibrium state of superconductors and other highly correlated electron

materials. In these experiments, the nonequilibrium state is prepared by the absorption of

short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the den-

sity and energy distribution of quasiparticles. The evolution of the nonequilibrium state is

probed by time-resolving the changes in the optical response functions of the medium that

take place after photoexcitation. The nonequilibrium state of the cuprate superconductors,

in particular, has been studied extensively. Ultimately, the goal of such experiments is to

understand not only the nonequilibrium state, but to shed light on the still poorly under-
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stood equilibrium properties of these materials. Recently, nonequilibrium experiments have

revealed aspects of the cuprates that have been inaccessible by other techniques. For exam-

ple, both the diffusion and recombination coefficients of quasiparticles have been measured

in underdoped single crystals of YBa2Cu3O6.5 using time-resolved optical spectroscopy.

One obstacle in our attempts to understand the nonequilbrium state of cuprates

has been the apparent nonuniversality of some of its properties. Perhaps the most basic

property is the time scale for return to equilibrium. In optimally doped YBa2Cu3O6.95

(YBCO), the first and most thoroughly studied cuprate, this time scale has been measured

using terahertz, infrared, and visible probe beams. In all cases the lifetime is very short,

roughly 2 ps, and is nearly independent of the initial density of nonequilibrium quasipar-

ticles, n0, and temperature, T . More recently, it was discovered that in YBa2Cu3O6.5, an

underdoped material with a Tc near 60 K, the lifetime measured at temperatures below 10

K extrapolates to greater than 1 ns in the limit that n0 goes to zero, almost a factor 103

longer than found in optimally doped YBCO under the same excitation conditions.

Another property that varies from one cuprate material to another is the sign of

the photoinduced change in reflectivity, ∆R, in the near-infrared regime. The fact that the

relaxation rates and the sign of ∆R are nonuniversal has hampered the search for unified

understanding of the nonequilibrium state. Here, we report a study of the nonequilib-

rium state in the Bi2Sr2CaCu2O8+d (BSCCO) system that sheds light on these seemingly

disparate results. Our measurements reveal that the nature of the relaxation process in

BSCCO superconductors changes drastically, precisely at optimal doping. Further, we find

that the sign of ∆R changes at the same hole concentration at which the sudden change
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in dynamics takes place. Our results raise the possibility that the disparities in relaxation

rate and sign of ∆R observed in other cuprate samples may be a consequence of a general,

or perhaps universal, change in quasiparticle dynamics that takes place at optimal doping.

4.2 Experimental results

Time-resolved optical spectroscopy was performed using pump and probe pulses

of photon energy 1.5 eV and duration 80 fs derived from a mode-locked Ti:Sapphire. The

samples are single crystals of Bi2Sr2CaCu2O8+d with Tc’s ranging from underdoped 39 K to

overdoped 72 K. The single crystals of BSCCO are grown with a floating zone method and

are carefully annealed and quenched to obtain uniform oxygen content inside the sample

[1].

Because the BSCCO crystals are optically thick at the laser wavelength of 820

nm, the changes in optical response were probed by measuring the reflected probe intensity.

Preliminary measurements on these samples revealed that the average power of the pump

pulses caused an unacceptable level of heating. Such effects, not encountered in YBCO,

can be traced to the much lower thermal conductivity of BSCCO, particularly in the c-axis

direction. In order to study the nonequilibrium state at low temperature, we inserted an

acousto-optic pulse-picker at the laser output. The pulse picker was configured to direct

only 1 in N pulses to the sample, where N=18, 36, etc. The data presented here were

collected with N=18, reducing the 90 MHz pulse repetition rate of the laser to 5 MHz. At

this rate the indications of heating were absent, and further reduction to 2.5 MHz produced

no additional changes in the amplitude or decay rate of ∆R. Fig. 4.1 is a plot of the
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Figure 4.1: The reflectivity change, ∆R, normalized to the reflectivity R, as a function
of the energy per area, ΦE , deposited by each pump pulse. The data shown is for samples
with (top to bottom) 70 K (underdoped), 79 K, 90 K (underdoped) 93.5 K (optimal) and
72 K (overdoped).

reflectivity change, ∆R, normalized to the reflectivity R, as a function of the energy per

area, ΦE , deposited by each pump pulse. The data shown were obtained from a series of

BSCCO crystals whose Tc’s range from 70 K (underdoped) to 72 K (overdoped). The plot

shows ∆R measured at 0.2 ps delay, before the decay of the reflectivity change has begun.

For each of the samples ∆R increases linearly at low ΦE , and shows some indication of

saturation at high ΦE in the underdoped samples. The most striking feature of the data

is the change in sign of ∆R, which takes place between the Tc=90 K (underdoped) and

Tc=93.5 K (optimally doped) samples.
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Figure 4.2: Normalized reflectivity change vs. time (top panel) and the initial decay rate
γ0 vs. initial reflectivity change, ∆R/R (bottom panel at 5K for three samples with Tc’s
left to right 70 K (underdoped), 93.5 (optimal) and 72 K (overdoped). Different colors in
the top panel are different laser intensities, slower curves being the low intensity and faster
curves being the high laser intensity.

Fig. 4.2 illustrates the crossover in quasiparticle dynamics that takes place at the

same hole concentration at which ∆R changes sign. Here we present results for three repre-

sentative samples: underdoped (Tc=70 K), optimally-doped (Tc=93.5 K), and overdoped

(Tc=72 K). The top panels show ∆R/R as a function of time delay after absorption of

the pump pulse, for different values of the pump laser fluence. As shown previously, the

maximum ∆R/R increases approximately linearly with ΦE . In order to compare the decay

rates at different ΦE , we scaled the amplitude to the same value near time-delay zero. For

each sample the graph appearing below the decay curves is a plot of the initial decay rate,

γ0, of ∆R/R as a function of ΦE .

The representative samples show that two basic features of ∆R/R change char-

acter at optimal doping. The first feature is the sign, which has already been shown to
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change from positive to negative in Fig. 4.1. The second feature is the dependence of the

decay rate on excitation density. In the underdoped sample the decay becomes slower with

decreasing ΦE . The lower panel shows that the dependence of γ0 on ΦE is linear, with es-

sentially zero intercept (we estimate an experimental uncertainty in γ0 of 0.005 ps−1, which

is approximately 10−2 of the maximum γ0 of 0.7 ps−1). Thus, in the underdoped sample

the lifetime of the excitations created by the laser appears to diverge as their initial density

tends to zero.

The two adjacent panels show that the dynamics of photoexcitations in the optimal

and overdoped samples are substantially different. Focusing first on the overdoped sample,

the sign change of ∆R is accompanied by a pronounced change in the relaxation dynamics.

The decay rate of the excited state is now essentially independent of the initial excitation

density. In the optimal sample the decay of ∆R appears at first to be complicated, showing

a sign reversal and some dependence on the excitation density. Considered in isolation

the curves would be difficult to interpret. However, recognizing that the optimally doped

sample sits precisely at a crossover in both the sign of ∆R and its relaxation dynamics helps

considerably in interpreting these curves. In fact, each of the curves can be modelled as a

superposition of two responses, one positive and dependent on ΦE , the other negative and

independent of ΦE . Figs. 4.3(a) and 4.3(b) summarize the data for each of the samples

used in this study, showing the crossovers in the amplitude and decay rate of ∆R. Fig.

4.3(a) is a plot of ∆R measured near zero time delay as a function of hole concentration

x, for different values of the laser intensity. Fig. 4.3(b) shows γ0 vs. x, again for different

values of ΦE . The values of x were obtained from the transition temperatures using the
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Figure 4.3: (a) Amplitude of ∆R/R vs. doping (x). (b) Initial decay rate (γ0) of ∆R/R
vs. doping (x). Different colors are different laser intensities.

empirical formula, x(Tc) = 0.16 ± [(1/82.6)(1 − Tc/Tmax
c )]1/2 [28]. The sharpness of the

crossover is shown most clearly in the behavior of γ0 at the lowest ΦE . For underdoped

samples, γ0 becomes very small at low ΦE . However, at optimal doping and above, where

γ0 is ΦE-independent, the rate becomes suddenly greater by more than a factor of ten.

While coincidence cannot be ruled out, our results suggest the possibility of a

connection between the sign of ∆R and quasiparticle relaxation. In the following, we

discuss the hole-concentration dependence of these two features, starting with the sign of

∆R. We conclude with speculation regarding the possible connection between these two

aspects of the nonequilibrium state.
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4.3 Discussion

We first consider how the presence of nonequilibrium excitations affects the dielec-

tric function, ε. In general, the occupation of excited states can only shift optical spectral

weight from one frequency range to another, because the total spectral weight is conserved.

The change in dielectric function, δε, that results from this shift depends on the relative or-

dering of the measurement frequency, ω0, and frequencies where spectral weight is lost and

gained. In the BCS picture, the generation of nonequilibrium quasiparticles shifts spectral

weight from the condensate d-function at ω = 0 to a narrow Drude peak. If the system is

probed at a much higher frequency, then ∆ε1 at ω0 is given by [45],

∆ε1
∼= −

8

ω4
0

∫

dω∆σ1(ω)ω2 (4.1)

The corresponding change in reflectivity, ∆R, can be calculated from the Fresnel

equation. Using literature values for the dielectric function of the BSCCO system at 1.5

eV, we find that R−1∂R/∂ε1 = 0.02. Thus the mechanism described in Eq. 4.1 can only

produce a negative ∆R and cannot account for the photoinduced response in underdoped

BSCCO.

In order for nonequilibrium excitations to increase ε1, their presence must shift low

frequency spectral weight to a frequency much higher than ω0, in which case ∆ε1
∼= 8A/ω2

0,

where A is the area under ∆σ1(ω). Such a spectral weight transfer, which is clearly outside

the realm of BCS theory, was suggested to account for recent observations of thermal changes

in ε1 measured near 1 eV in BSCCO [39]. It was reported that ε1, and consequently R,

increase with heating through the superconducting transition temperature. The sign of this

effect is consistent with the photoinduced changes in underdoped BSCCO that we measure,
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in that for both cases R increases with a weakening of superconductivity.

In discussing their results, Molegraaf et al. used the Maldague theorem to equate

spectral weight shift to change in kinetic energy of the conduction electrons. In order

to compare the photoinduced and thermally induced change in ε1, we convert our mea-

sured ∆R to kinetic energy change using the relation, A = (e2/h̄2d)〈−∆T 〉, where d is

the spacing between the conducting Cu-O planes. We use the resulting conversion factor,

〈−∆T 〉 = (7.6eV )∆R/R , to add a scale of energy to the (right-hand side) vertical axis

of Fig. 4.1. We see that according to this interpretation, weakening superconductivity

through photoexcitation leads to changes in kinetic energy per electron on the scale of cou-

ple of meV. This is comparable to the change found when superconductivity is weakened

thermally.

Further insight into this mechanism is gained by converting the horizontal axis as

well, from energy deposited per area to energy deposited per Cu plaquette, uCu. We use

the conversion, uCu = aCuΦEd/δ, where aCu is the plaquette area and d is the penetration

depth of the laser energy. We note that the energy deposited per plaquette is on the scale

of tenths of meV.

Within this interpretation, the sign of ∆R in the underdoped BSCCO samples

indicates a reduction in kinetic energy in the superconducting as compared with normal

state. The sign is consistent with that inferred from the thermally-induced changes in

varepsilon1. However, within the same interpretation, the kinetic energy increases in the

superconducting for the overdoped sample. This increase in kinetic energy agrees with the

predictions of the BCS theory, where the transition is driven by potential energy lowering.
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Overall, the data are consistent with a crossover from unconventional, kinetic energy-driven

superconductivity to potential-energy driven superconductivity at optimal doping.

We turn next to a discussion of the relaxation dynamics of the nonequilibrium

state in BSCCO, beginning with the underdoped side of the phase diagram. The linear

dependence of γ0 on ΦE seen in Fig. 4.2 can be viewed as a consequence of the pairing

theory of superconductivity. To reenter the condensate a nonequilibrium quasiparticle must

find another to reform a Cooper pair. The rate of such encounters depends linearly on their

density. However, it is important to recognize that when two quasiparticles scatter into the

condensate they emit an excitation whose energy is equal to the combined energy of the

original quasiparticles. Furthermore, the measurement time scale is too short for the energy

that is emitted to propagate outside of the volume that is probed optically. Therefore, the

decay of ∆R must be interpreted as the conversion of energy from a form which changes

the optical response at 1.5 eV, that is nonequilibrium quasiparticles, to one that does not.

Identifying the nature of this ’dark energy,’ for example vibrational or magnetic, would be

a major step towards understanding the mechanism of superconductivity in the cuprates.

With the underdoped response as context, the implication of the crossover to

excitation-density independent dynamics is reasonably clear. At optimal doping a new

channel for the relaxation of a quasiparticle opens, one that does not involve recombination

with another quasiparticle. Such a channel is inelastic scattering, a process in which a

single quasiparticle loses energy and momentum and emerges in a final state different from

its initial one. The Feynman diagrams for the recombination and inelastic scattering are

shown in Fig. 4.4. The quantum of energy emitted in both processes is labelled X, as it is
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(a) (b)

Figure 4.4: The Feynman diagrams for the recombination (a) and inelastic scattering (b).

yet to be identified. The diagrams are closely related, as the two processes have the same

excitations entering or leaving the vertex. They differ in that a quasiparticle in the initial

state of the recombination process appears in the final state for inelastic scattering. The

extra quasiparticle in the initial state causes recombination to depend strongly on excitation

density and temperature, whereas scattering is essentially independent of both. In order

for scattering to cause ∆R to decay the quasiparticle that appears in the final state cannot

itself induce a change in reflectivity at 1.5 eV.

The opening of a channel for quasiparticle scattering suggests a change in the

ordering of excited state energies. In fact, it is known from inelastic neutron scattering

(INS) and ARPES that a level crossing does indeed take place at optimal doping [13].

ARPES shows that the maximum value of the gap, ∆M , decreases roughly linearly as a

function of x. INS has demonstrated the existence of a spin 1 (triplet) exciton whose energy

varies in proportion to Tc as x is varied. On the underdoped side of the phase diagram, ∆M

is larger than the exciton energy, ΩX . With increasing x, ∆M decreases while ΩX increases,

and they reach the same value of about 40 meV at optimal doping. Beyond optimal doping

the two levels both decrease in energy and remain less that approximately 10 meV apart.

The existence of this level crossing can potentially account for a sudden change
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in quasiparticle relaxation, as in the following scenario. Very rapidly after photoexcitation

nonequilibrium quasiparticles relax to states near the M point, the antinodal regions of the

Brillouin zone. Further relaxation along the Fermi contour towards the node by emission of

low energy electron-hole pairs is extremely slow because of energy and momentum conserva-

tion. However, emission of a magnetic exciton can occur because it has a very large spread

in momentum. Evidence for emission of magnetic excitons by antinodal quasiparticles is

seen in the quasiparticle self-energy as measured by ARPES and optical conductivity.

We consider how antinodal quasiparticle relaxation would vary with x in this

scenario. For x < xopt, relaxation by magnetic exciton emission stops when the quasiparticle

energy falls to ΩX . Once this energy is reached, an isolated quasiparticle is essentially

metastable and must find another in order to recombine. At almost precisely optimal

doping a channel opens in which an antinodal quasiparticle scatters directly to the nodal

region by exciton emission. For x > xopt, this channel stays open as because ΩX and ∆M

remain comparable.

For internal consistency, this scenario requires that nodal quasiparticles emitted

in the scattering process do not contribute to the change in R at 1.5 eV. This condition

is reasonable, based on our previous discussion of how ∆R originates from shifts of opti-

cal spectral weight. Hosseini et al. [26] have demonstrated, using broadband microwave

spectroscopy, that the entire spectral weight removed from the condensate by thermal ex-

citation of nodal quasiparticles is transferred to a narrow Drude peak centered on ω = 0.

From Eq. 4.1 it follows that De1 due to this spectral weight shift is negligible on the scale

of our observations. On more qualitative grounds, it is reasonable to suppose that nodal
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quasiparticles weaken superconductivity less than antinodal ones, as their presence does not

block the formation of tightly bound Cooper pairs.

We now return to the issue of the coincidence of crossovers at xopt in the sign and

relaxation dynamics of ∆R. The notion that the nature of the transition to superconductiv-

ity might change at, or near, optimal doping was advanced early in the theoretical study of

cuprate superconductivity. Many subsequent experiments, which revealed a pseudogap in

the normal state that closes near optimal doping, support this prediction. Thus a crossover

in sign of ∆R may be considered as intrinsic to the basic physics of cuprate superconductiv-

ity. On the other hand, the degeneracy of the antinodal quasiparticle and the triplet exciton

that we have invoked to explain the crossover in dynamics at optimal doping is widely re-

garded as accidental. However, our data show that the sign and relaxation dynamics are

one-to-one correlated, suggesting that the degeneracy may not be accidental.

We conclude with a comment regarding the relation of nonequilibrium experiments

to the search for the high-Tc mechanism, which has proved so difficult. Identifying the ex-

citations released when antinodal quasiparticles recombine or inelastically scatter would

constitute a breakthrough in this search. These excitations are produced copiously in the

nonequilibrium state prepared by absorption of a laser pulse. Developing time-resolved

probes that can detect and identify these excitations may be a fruitful strategy for uncov-

ering the basis of cuprate superconductivity.
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Chapter 5

Transient Grating Spectroscopy

The transient grating technique has been used successfully in a wide variety of

applications, including exciton diffusion, dynamics of biomolecules, propagation of ultra-

sound, and thermal diffusion [12]. In this technique, a pair of laser beams is interfered on

a sample, producing a sinusoidally varying pattern of intensity, and hence photoexcitation

density. If the presence of photoexcitations affects the index of refraction of the material,

the interfering pump beams create a diffraction grating at the sample surface. The time evo-

lution of this transient grating provides information about the relaxation and propagation

of excitations created by the laser beams.

In this chapter, we will describe the phase matching condition, heterodyne detec-

tion, phase calibration and experimental implementation of the transient grating.
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5.1 The basics of the transient grating

To probe the time evolution of the grating, a third beam is sent onto the sample.

The probe is specularly reflected (or transmitted in the case of an optically thin sample) and

diffracted from the transient grating. The direction of the diffracted beam is determined

by conserving energy and momentum parallel to the plane of the sample. Momentum

perpendicular to the plane is not conserved.

One way to think about the physical process in transient grating experiment is

to consider absorption of one of the two pump beam photon and a probe beam photon

and simultaneous emission of the other pump beam photon and a diffracted beam photon.

If the two pump beams that create the grating have the wave vectors k1 and k2, and

the probe beam and the diffracted beam have wave vectors kp and ks, then this process

would be simultaneous absorption of k1 and kp together with simultaneous emission of

k2 and ks. In a degenerate transient grating experiment, energy conservation dictates

that |k1| = |k2| = |kp| = |ks| = k. Since the momentum parallel to the sample plane is

conserved, then k
||
1 + k

||
p = k

||
2 + k

||
s . By symmetry, we can also consider absorption of k2

and kp photons with emission of k1 and ks. In this case, k
||
2 + k

||
p = k

||
1 + k

||
s . Therefore,

in general there would be two different different diffracted beams corresponding to ±1

diffraction orders with (k±
s )|| = k

||
p ± q|| where q = k1 − k2 and |k±

s | = k.

To better visualize the momentum and energy conservation, Fig. 5.1 (a) illus-

trates two dimensional problem where two pump beams with wave vectors k1 and k2 and

wavelength λ are incident on the sample each making an angle θ with the sample normal.

Interference of these two beams creates an intensity grating with wavelength λg = λ/(2sinθ)
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Figure 5.1: Geometry of the transient grating experiment. (a) Two pump beams (k1 and
k2 with q = k1 − k2) symmetrically incident on the sample create the grating. (b)Probe
beam kp is diffracted off of the grating according to energy conservation and momentum
conservation in the plane of the sample. Both forward (transmitted) and backward (re-
flected) diffracted wave vectors for the ±1 diffraction orders are shown (a total of four wave
vectors). ∆k is the mismatch in the momentum in the direction perpendicular to the sample
surface. (c)The intensity of the diffracted wave (Is in arbitrary units)is plotted as a function
of ∆kLz for a fixed value of Lz where Lz is the thickness of the grating. For a fixed value of
Lz, diffraction intensity is maximum for ∆k = 0, known as the phase-matching condition.

and wave vector (q = k1 −k2) parallel to the sample surface. In Fig. 5.1 (b) a probe beam

incident on the sample with a wave vector kp is diffracted into four possible wave vectors,

corresponding to the ±1 orders of the transmitted and reflected diffracted waves. These

wave vectors are obtained by conserving energy and momentum in the plane of the sample.

Dashed circle in the figure has a radius of k. Conservation of the energy is managed by

having the tip of every wave vector to lie on the circle. To conserve the total momentum,

kp can change by ±q. But in general, the resulting wave vectors kp ± q will not lie on
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the circle. But since only momentum parallel to the sample surface is conserved, the wave

vectors for the diffracted waves will have the same parallel momentum component as kp±q

and lie on the circle. Geometrically, this is obtained by drawing perpendicular lines at the

tips of kp ± q. The points where these lines (shown as dashed lines in Fig. 5.1 (b)) inter-

sect the circle correspond to wave vectors for which energy and momentum in the plane is

conserved.

Fig. 5.1 (b) also shows the mismatch in the momentum perpendicular to the sur-

face (∆k) for one of the diffraction orders. The intensity of the diffracted signal (Is) depends

on ∆k and the grating thickness (Lz). Lz is determined by the length of the interaction

region of the beams inside the sample. For a fixed value of Lz, Is ∝ [sin(∆kLz)/(∆kLz)]
2

[25]. Fig 5.1 (c) shows a plot of the Is as a function of ∆kLz for a fixed value of Lz.

Maximum diffracted intensity is obtained for a perfect phase-matched geometry i.e. when

∆k = 0. Therefore, it is desirable to have ∆k = 0 for maximum diffraction efficiency.

5.2 ”Boxcar” phase matching geometry

To maximize the diffracted intensity, we need to satisfy the phase matching con-

dition. In three dimensions, two beams and the probe beam can be arranged to satisfy

this condition. A very common geometry used for this is known as the ”boxcar” geometry

[35]. A simple drawing of this geometry is shown in Fig. 5.2. Three parallel beams, pump

1, pump 2 and probe are arranged parallel to each other so that the laser spots form the

three corners of a rectangle in a plane perpendicular to their path. A lens with axis passing

through the center of this rectangle is used to focus the beams onto the sample under study.
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Figure 5.2: ”Boxcar” phase matching geometry of the transient grating experiment. Three
parallel beams, pump 1, pump 2 and probe are arranged parallel to each other so that the
laser spots form the three corners of a rectangle in a plane perpendicular to their path. A
lens with axis passing through the center of this rectangle is used to focus the beams onto
the sample under study. Diffracted beam emerges along the fourth corner of the rectangle
since ks = kp + q where q = k1 − k2.

Diffracted beam with wave vector ks will emerge through the fourth corner of the rectangle,

since ks = kp + q where q = k1 − k2.

This arrangements of the beams automatically satisfies the energy conservation

and the momentum conservation. Also, it is convenient because it provides a way of knowing

the direction of diffracted beam. Since the signal is typically weak, it is often very helpful

to know the direction before the experiment.

Up to know, we have discussed the creation of the grating, phase matching condi-

tion and the ”boxcar” geometry of the transient grating. In the following section, we will

discuss the experimental implementation of transient grating technique.
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Figure 5.3: Experimental setup for complete characterization of a transient grating in re-
flection geometry. For clarity only incident pump and probe beams are shown.

5.3 Transient grating setup

In this section, we describe an experimental setup capable of complete transient

grating characterization in a reflection geometry. This setup is built on the pump probe

setup described in Fig. 2.1. The part of pump probe setup in Fig. 2.1 before the lens is

exactly same in the transient grating setup. All the optics for the transient grating are

placed after this lens. Here we will only describe the part of the setup after the lens, since

prior to the lens it is already described in Chapter 2.

Fig. 5.3 shows the transient grating setup. A transmission grating (phase mask)

is placed in the focus of the pump and probe beams instead of the sample in Fig. 2.1. Both

pump and probe beams are split into two identical replicas using this phase mask [19, 38].

A spherical mirror and a plane folding mirror (represented schematically by the second lens

in the sketch) focus the beams onto the sample. The spherical mirror is placed such that
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the phase mask is at the center of the mirror. It is rotated couple of degrees to get the

beams on to the folding mirror which focuses them on to the sample. In Fig. 5.3, we only

show the incident beams, the path of the reflected beams will be discussed below.

5.3.1 The use of diffractive optics

The most important part of the transient grating setup is the use of a phase mask

to split the beams. Phase masks are surface relief gratings etched in fused silica. There

are several reasons to use a phase mask rather than a regular beam splitter [18]. The

advantages are (1) automatic beam alignment for ”Boxcar” phase matching as shown with

a dashed rectangle in Fig. 5.3; (2) automatic spatial and temporal overlap of the signal and

reference beams on the detector; (3) tilted wavefronts which preserves the temporal and

spatial resolution between the object and image plane contrary to a regular beam splitter;

(4) high efficiency comparable to regular beam splitters; (5) passive phase stability between

the input fields which eliminates the need for active phase locking.

We used a custom made phase mask manufactured by Digital Optics Cooperation

optimized for 800 nm. It consists of 10 different phase mask etched in a square shape (2.5

mm by 2.5 mm) on fused silica substrate. They have periods ranging from 2 µ to 10 µ.

Since the grating formed on the sample has half the period as the phase mask, in theory

we can generate gratings with periods ranging from 1 µ to 5 µ. In practice, this is limited

by the f number of the spherical mirror. Lower grating periods require higher incidence

angles, therefore high f numbers. Our spherical mirror had a radius of 12” and an aperture

diameter of 6”, so we can go down to 2 µ gratings rather than 1 µ. This can be improved

simply by putting in a higher f number spherical mirror.
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The phase mask is mounted on a XYZ translational stage which allows switching

between the different gratings without changing the alignment. As will be explained below,

reflected beams also return back through the same phase mask. Therefore the only thing

we need to do to change the grating period is to translate the phase mask, everything else

stays unchanged and the setup is self aligned for all the gratings. This provides the ability

to change the grating period in just couple seconds.

To create the grating two pump beams are required, but in principle one probe

beam is enough to probe the grating. When using a diffractive optics, two probe beams are

generated labelled as P1 and P2 in the Fig. 2.1. One can either block one of them and do

”homodyne” detection or use both beams to do ”heterodyne” detection. In the following

section, we will describe and compare the two different detection techniques.

5.4 Homodyne and Heterodyne detection of the grating

The intensity of the diffracted beam depends quadratically on the amplitude of

the index change, δn. Because δn is often very small, the diffracted signal can be difficult

to measure using standard methods of intensity (or homodyne) detection. Moreover, since

photo-detection of intensity destroys information about the phase, it is not possible to mea-

sure the real and imaginary parts of δn. This is a significant limitation, because information

about the complex phase angle of δn is often useful in constructing a physical model of the

photo-excitation process.

Heterodyne detection is an alternative detection method that enhances sensitivity

and preserves the phase information contained in the diffracted probe beam [51, 6]. In this
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Figure 5.4: Heterodyne detection in the ”Boxcar” phase matching geometry of the transient
grating experiment. The pump beams that create the grating are incident along k1 and
k2 and the probe and LO beams are incident along kP and kLO. Since kLO = kP + q,
diffracted probe beam emerges collinear with the specular or transmitted LO.

technique, the probe is mixed with another beam from the same laser which acts as a local

oscillator (LO). ”Boxcar” geometry explained in Section 5.2 can be used to implement self

aligned heterodyne detection. In Fig. 5.2, if we send the LO beam along the fourth corner

of the rectangle then it is guaranteed that the diffracted signal will be collinear with this

beam. This is shown in Fig. 5.4.

In a typical experiment, the beam containing both the diffracted probe and LO

are directed to a standard photodetector. The output current of the detector (ID) is related

to the total intensity,

ID ∝ |ELO|
2 + |ES |

2 + 2Re(ELOE∗
S) (5.1)

where ELO, and ES are the electric field of the LO and diffracted probe respectively. The

last term on the right-hand side of Eq. 5.1 corresponds to the mixing of the LO and the

signal carrying beams.
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We can see the improvement in the signal amplitude by analyzing the terms on

the right hand side in more detail. The first term is independent of δn. The second term is

the homodyne signal, which is second order in δn. The third term is the heterodyne signal

and is linearly proportional to δn. In many experiments δn ≈ 10−4 − 10−5, and the third

term is four to five orders of magnitude larger than the second term. In this range of δn,

heterodyne detection can provide four to five orders of magnitude improvement in signal as

compared with conventional homodyne detection.

The mixing term in Eq. 5.1 can be expressed in the form 2ELOES cos φ, where

φ is the phase of the signal relative to the LO. This phase can be varied by changing the

relative optical path length of the probe and LO beams. In practice, a convenient method

to achieve a continuous scan of φ is to pass one of the beams through a thin glass coverslip

placed on a rotating mount. Measuring the detector current as a function of the coverslip

angle yields a direct measurement of φ for any position of the coverslip.

5.5 Phase calibration

A problem encountered in transient grating experiments is that it is difficult to

determine the complex phase angle of δn from a measurement of φ. As will be shown below,

φ can be written as φ = φS +φ12−φLP [19] where φ12 is the relative phase of the two pumps,

φLP is the relative phase of the LO and probe before interacting with the sample, and φS

is the phase shift caused by diffraction from the transient grating. The latter quantity is

directly related to the phase of δn. It is clear from the expression above that determining

φS requires knowledge of φ12 and φLP , which are difficult to measure. Prior to this work
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the usual approach has been to calibrate the system by using a reference material, in which

the phase of δn is known [19, 38].

This method of phase calibration has several limitations. First, any uncertainty

in the response of the reference sample introduces a systematic error in the measurements.

Second, this method is incompatible with measurements performed in a reflection geometry,

as the position and orientation of the sample and reference must be kept the same to a high

degree of accuracy. Finally, the calibration must be performed frequently to compensate

for phase drifts due to temperature variation and other environmental effects.

In this section, we introduce a new method that provides a far more convenient

and accurate phase calibration. It eliminates the need for a reference sample and can be

used both in reflection and transmission geometries. Our method is based on the symmetry

between the LO and the probe beams. In the phase-matched boxcar geometry, the probe

beam and the LO are interchangeable. Each beam is diffracted into the specular beam of

the other. Since the two beams are symmetrical in this sense we will refer to them as P1

and P2, rather than probe and LO. As we show below, comparing the photodetector current

as a function of φ (or coverslip angle) when P1 is the LO with that obtained when P2 is

the LO provides the extra information required for absolute phase calibration.

The fields of the pump beams that create the grating can be written as the real

parts of the complex fields E1 = Eei(k1·r+φ1) and E2 = Eei(k2·r+φ2). The intensity at the

sample surface produced by the superposition of these fields is proportional to |E|2[1 +

cos(qx + φ12)] where q = qx̂ and φ12 = φ1 − φ2. (In order to focus on the absolute

phase calibration, we treat the limit where the grating thickness is much smaller than the
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wavelength. In this case the grating must be probed in a reflection geometry. The extension

to the thick grating case and transmission geometry is straightforward). Assuming that the

photoinduced change in reflection coefficient (δr) is proportional to the local light intensity,

the reflection coefficient at the surface immediately after photoexcitation is given by r = r0+

δr[1+cos(qx+φ12)] where r0 is the equilibrium reflectivity. For times after photoexcitation

the reflectivity can be written in the form r(t) = r0 + δr(t)[1 + ε(t)cos(qx + φ12)] where ε

is the ratio of the grating amplitude to its mean value.

As stated previously, each probe beam is both diffracted and specularly reflected

from the reflectivity grating. To discuss the amplitude and the phase of these waves, we

rewrite the reflectivity in the form r = r0 + δr + (δr/2)(η + η∗), where η ≡ εei(qx+φ12). The

term r0 + δr is the coefficient for specular reflection, whereas δrη and δrη∗ are proportional

to the amplitudes for diffraction into the ±1 diffraction orders. If we first consider probe P1,

the two diffracted orders have wavevectors kP1−q and kP1+q. Because the phase-matched

geometry ensures that kP2 = kP1 −q, the component of P1 whose wavevector is shifted by

−q emerges collinear with the reflected wave from P2. This wave acquires the phase factor

η∗ as it diffracts from the transient grating. Turning next to probe P2, the diffracted wave

whose wavevector is shifted by +q is diffracted into the path of P1. This wave acquires the

conjugate phase factor η.

The absolute phase calibration is obtained by comparing the intensity of the beams

that emerge from the sample along the directions defined by the specular reflections of P1

and P2. To see how this comes about, we write the amplitude of the incident probe beams in

the phasor form EP1,2 = EP eiφP1,2 (as the two beams propagate collinearly after interacting
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with the sample we can ignore the spatial dependence of the phase). The amplitude in

the specular path of P1 is EP [(r0 + δr)eiφP1 + (δrη/2)eiφP2 ] and the amplitude in the

specular path of P2 is EP [(r0 + δr)eiφP2 + (δrη∗/2)eiφP1 ]. The intensity, and therefore the

photodetector current, for each of the two paths is proportional to the square of the phasor

amplitude.

After neglecting terms that are second order in δr, we obtain IP1,P2 = Ieq
P +

∆IP1,P2, where Ieq
P is the dc value of the photo-detector current and proportional to the

equilibrium reflectivity (Ieq
P ∝ |r0|

2|EP |
2) independent of the pump beams . ∆IP1,P2 is the

transient change in the photo-detector current induced by the pump beams. Expanding the

equations above yields:

∆IP1

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)cos(ψ − φS)] (5.2)

∆IP2

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)cos(ψ + φS)]. (5.3)

To obtain ∆IP1,P2, we modulate the intensity of the pump beams and use a lockin

amplifier to measure the change in IP1,P2 at this frequency. Measuring the dc output of the

photo-detector provides a direct measure of Ieq
P , and the ratio ∆IP1

Ieq

P

can readily be obtained

experimentally.

In Eqs. 5.2 and 5.3, φS is the phase of δr with respect to r0 and ψ ≡ (φP1 −

φP2) − φ12. Measuring ∆IP1 and ∆IP2 as a function of the phase angle ψ, together with

Ieq
P , provides a complete characterization of the grating parameters, that is, |δr/r0|, ε, and

φS .

In Fig. 5.5, we show the experimental implementation of the heterodyne detection
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Figure 5.5: Experimental setup for measuring the absolute phase in transient grating
experiments

and phase calibration (for clarity, only the probe beams are shown). A rotating coverslip

is used to continuously change the phase difference, φP1 − φP2, between the two probe

beams. After reflection and diffraction from the surface of the sample, the probe beams

pass through the same transmission grating in the reverse direction. They emerge from the

grating with their collinearity restored and are sent to a photodetector.

The use of a diffractive optic beamsplitter makes it possible to measure the two

currents, IP1 and IP2 without realignment of the setup. In performing the absolute phase

calibration, we first block one of the reflected probes before it returns to the phase mask

and allow the other reflected probe reach the detector. If P2 is blocked, for example, the

detector current corresponds to IP1. Measurement of IP2 requires only that we switch the

beam stop to block the reflected P1.

By rotating one of the two coverslips placed in the probe beam paths, we can

continuously change the phase ψ. If the angle of incidence of the probe on the coverslip
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Figure 5.6: Fractional photoinduced change in intensity as a function of the cover slip angle
(θ) in Bi2Sr2CaCu2O8+δ. Solid lines are fits to Eqs. 5.4 and 5.5. The phase difference
between the two cosines gives 2φS = −0.96 rad.

is close to 450, the change in ψ introduced by a small rotation is a linear function of the

rotation angle, θ. Therefore, we can write ψ(θ) = k(θ − θ0), where θ0 and k are constants.

In the setup, we mounted one of the coverslips on a rotational stepper motor which can

change θ in steps of 0.0010. Rotating this coverslip by approximately 20 changes the ψ by

2π.

To obtain φS , we record ∆IP1(θ)
Ieq

P

and ∆IP2(θ)
Ieq

P

as a function of θ. If we plug in the

expression ψ(θ) = k(θ − θ0) in to Eqs. 5.2 and 5.3, we get:

∆IP1(θ)

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)cos(kθ − (kθ0 + φS))] (5.4)

∆IP2(θ)

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)cos(kθ − (kθ0 − φS))]. (5.5)

Fig. 5.6 shows measurements of ∆IP1(θ)
Ieq

P

and ∆IP2(θ)
Ieq

P

on a high temperature super-
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conductor ( Bi2Sr2CaCu2O8+δ) [16] at T= 5 K, measured near zero time delay between

the pump and the probe. We fit these curves into the form
∆IP1,P2(θ)

Ieq

P

= a + bcos(kθ − β1,2)

where a, b, k and β1,2 are fit parameters. From the Eqs. 5.4 and 5.5, the values of a

(=
∣

∣

∣

δr
r0

∣

∣

∣ cosφS), b (=
∣

∣

∣

δr
r0

∣

∣

∣ ε/2) and k are going to be equal for P1 and P2. The values of β1

(= kθ0 +φS) and β2 (= kθ0−φS) will be different for P1 and P2. From the obtained values

of β1, β2 and k, we can get θ0 and φS . After obtaining φS , from the values of a and b, we

can get
∣

∣

∣

δr
r0

∣

∣

∣ and ε. Therefore, we have demonstrated a way of completely characterizing the

photoinduced grating parameters
∣

∣

∣

δr
r0

∣

∣

∣, ε and φS . If we repeat this measurement at different

pump probe delays, we will obtain these expressions as a function of time.

5.6 Data acquisition

In this section, we describe how we acquire data. In the actual experiment the

first thing we do is to record the fractional change in the detector current as a function of

the coverslip angle (
∆IP1,P2(θ)

Ieq

P

) for the two different probes. A typical plot is shown in Fig.

5.6. From the fits described in the previous section we obtain θ0 and k. θ0 is the position

of coverslip for which the phase ψ(θ) = k(θ − θ0) vanishes i.e. ψ(θ0) = 0. Since we know

k we can calculate the positions of the coverslip (θ1 and θ2) for which ψ(θ1) = π/2 and

ψ(θ2) = π.

Recording the
∆IP1,P2(θ)

Ieq

P

for many different values of θ for both P1 and P2 is a time

consuming process. Every time a control parameter (pump intensity, temperature etc...) is

changed in the experiment, this needs to be repeated. Data taking can be simplified a lot

by realizing that the values of k and θ0 are independent of the sample properties. They
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depend on the geometry of the setup itself. Once we obtain these values initially through

the procedure described above, it is sufficient to record ∆IP (θ)
Ieq

P

for only one of the probe

beams and for the positions of the coverslip θi = θ0, θ1 and θ2 for which ψ(θi) = 0, π/2 and

π. To see this, we plug in these values of ψ into Eq. 5.2, forψ = 0

∆IP (0)

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)cos(φS)] (5.6)

for ψ = π/2

∆IP (π/2)

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) + (ε/2)sin(φS)] (5.7)

and for ψ = π

∆IP (π)

Ieq
P

=

∣

∣

∣

∣

δr

r0

∣

∣

∣

∣

[cos(φS) − (ε/2)cos(φS)] (5.8)

This procedure gives three independent equations (Eqs. 5.6, 5.7 and 5.8) for

three unknowns (
∣

∣

∣

δr
r0

∣

∣

∣, ε and φS). Recording these values as a function of time yields time

dependent grating parameters.

Therefore, in practice when taking data we first follow the procedure in the pre-

vious section to obtain the values of k and θ0. After this we only record ∆IP (θ)
Ieq

P

for only

one of the probe beams for three different positions of the coverslip. We have tested the

stability of our system by measuring the phase drift after several hours. The phase shift

was found to be less than ∆ψ = k∆θ = 50 out of 3600 in three hours. This is another check

on the validity of this method of data taking. From day to day, the position of the coverslip

typically only changed by ∆ψ = k∆θ = 150. This also shows the extreme stability of our

setup. We repeat the phase calibration if we change the grating wavelength or change the

temperature by considerable amount since these might cause slight alignment changes.
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In summary, we have described a diffractive optics based heterodyne detected tran-

sient grating setup in reflection geometry. We also discussed a new method of measuring the

absolute phase of the photoinduced change in reflectivity in transient grating experiments.

The phase is obtained by comparing the intensity of the two probe beams as a function of

the phase change introduced by a rotating coverslip. This method resolves the long standing

problem of calibration of the phase in transient grating experiments.
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Chapter 6

Diffusion of Quasiparticles

6.1 Introduction

Quasiparticles are the elementary excitations of a superconductor, created when

a Cooper pair of electrons breaks apart. The dynamic properties of quasiparticles, that

is their rates of diffusion, scattering, trapping, and recombination, are critical for appli-

cations of conventional superconductors in X-ray detectors [3] and in the manipulation of

superconductor-based qubits [34]. In more exotic superconductors, such as the high-Tc

cuprates, a better understanding of quasiparticle dynamics may help to uncover the mech-

anism for Cooper pairing. A special property of the cuprate superconductors is the d-wave

symmetry of the gap function, which leads to an unusual quasiparticle spectrum. The min-

imum energy for the creation of a quasiparticle depends on the direction of its momentum

[47]. It is zero for momenta in the ’nodal’ direction, oriented at 45◦ relative to the Cu-O

bond. The most energetically expensive quasiparticles are the ’antinodal’ ones, whose mo-

menta are nearly parallel to the bond. The antinodal quasiparticles are the mystery particles
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of cuprate superconductivity. Because they feel the pairing interaction most strongly, their

properties may hold the key to high-Tc superconductivity. Unfortunately, their tendency

to form strong pairs makes them difficult to study. In thermal equilibrium the population

of quasiparticles is overwhelmingly dominated by the low energy nodal ones. As a result,

transport measurements performed in equilibrium, such as microwave [26] and thermal [53]

conductivity, are insensitive to antinodal quasiparticles.

6.2 Experimental methods

The details of the experimental technique is provided in Chapter 5. Here we only

provide a brief summary. In this work a transient grating technique was developed and

used to probe the transport of nonequilibrium quasiparticles in the high-Tc superconductor

YBa2Cu3O6.5. We find that the diffusion coefficient, D, is much smaller than the value

obtained in measurements on equilibrium quasiparticles in the same material. The disparity

in D suggests that the current experiment probes a population of quasiparticles that are

not near the nodes, and are perhaps close to the antinodal regions of momentum space.

The nonequilibrium quasiparticles were introduced using short optical pulses. To

probe their propagation, we generated a spatially periodic population by interfering two

pulses at the sample surface. The spatial period, λg, equals λ/2sinθ, where λ is the wave-

length of the pulse and 2θ is the angle between the two pump beams. The nonequilibrium

quasiparticles cause a change in the index of refraction at the laser frequency [8] which is

a linear function of their density [45]. As a result, the sinusoidal variation in quasiparticle

density creates an index grating which can be detected by the diffraction of a probe pulse.
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After creation, the distribution of quasiparticles evolves due to the combined effects

of recombination and diffusion. In the process of recombination a pair of quasiparticles

jumps back into the Cooper pair condensate with the simultaneous transfer of their creation

energy to some other form (e.g. phonons). The amplitude of the grating may also decay

as quasiparticle diffusion drives the system towards a spatially homogeneous quasiparticle

concentration. The goal of the experiment is to disentangle these effects and measure both

the rates of recombination and diffusion.

The transient grating technique has been used successfully in a wide variety of ap-

plications, including exciton diffusion, dynamics of biomolecules, propagation of ultrasound,

and thermal diffusion [12]. Observing the propagation of superconducting quasiparticles re-

quires the ability to detect the transient grating at extremely dilute concentrations. At

the low excitation densities needed to detect their propagation, the quasiparticles produce

no more than 10−5 fractional change in the index of refraction. The diffracted intensity

from such a grating would therefore be of order 10−10 of the incident probe intensity and

consequently very difficult to detect.

Detection of the grating required measurement of the amplitude of the diffracted

wave, which is a part in 105 of the probe, rather than the intensity. This is accomplished

through the use of heterodyne detection [51, 6]. The key element in the success of the

heterodyne technique is the diffractive optic (DO) beamsplitter, which creates pairs of

pump and probe beams [19, 38]. The DO element in our experimental setup (Fig. 6.1) is an

array of 10 separate 2.5 mm square phase masks, each with a different grating period, on

a fused silica substrate. A beam from a Ti:Sapphire laser (λ=800 nm and pulse repetition
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Figure 6.1: Illustration of the beam path for heterodyne transient grating detection. Pump
and probe beams from the laser are split at the diffractive optic (for clarity only the probe
beams are shown). A spherical mirror and plane folding mirror (represented schematically
by a lens in the sketch) focus the beams to a single 100 µm spot on the sample. After specular
reflection and diffraction at the sample surface, the two probe beams are recombined by
the diffractive optic and directed to a Si photodiode detector. The wavevector of the
quasiparticle density variation is changed, without optical realignment, by translating the
diffractive optic so that a different phase mask in the array is inserted in the beam.

rate 80 MHz) is split into primary pump and probe beams, which are focused onto one of

the phase masks at a small angle with respect to each other. The phase mask splits each of

the primary beams by diffraction into the m=±1 orders. (For clarity, only the probe beam

paths are shown in Fig. 6.1).

The interference of the two pump beams creates a spatially varying index of re-

fraction in the sample which reaches a depth 1000 Å below the surface and has half the

period of the phase mask. We detect the index variation using an implementation of the

heterodyne technique that enables absolute calibration of the phase as explained in 5. Each

of the two probe beams is specularly reflected from the surface of the sample, and returns,
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via the DO, to a Si detector. The two possible round-trip beam paths are shown as solid and

dashed lines in Fig. 6.1. With the use of the DO beamsplitter, detection of the diffracted

probe is automatically aligned. The diffracted component of P1 is precisely collinear with

reflected P2, and vice versa. The experiment is performed by alternately blocking one of

the two reflected beams. If reflected P1 is blocked, then reflected P2 and diffracted P1 are

mixed in the detector. This measurement by itself is insufficient to extract the wave ampli-

tudes because the relative phase of P1 and P2 is undetermined. However, simply blocking

reflected P2 instead of P1 produces a mixed signal with the conjugate phase. Comparing

the detector output for the two conjugate beam paths fixes the absolute phase and therefore

the wave amplitudes as well.

6.3 Experimental results

By adjusting the phase delay of P1 relative to P2, the output of the Si photodiode

measures either the change of the specular reflection coefficient due to the grating, R, or

the amplitude of the diffraction efficiency, TG. R is proportional to the spatial average

of the quasiparticle concentration, whereas TG is proportional to the component of the

quasiparticle concentration at the fundamental period of the grating, λg [15]. In Fig. 6.2

we plot both R and TG for λg =2 µm as a function of time delay, for several intensities of

the excitation pulses, and consequently for a range of initial quasiparticle concentrations.

The temperature of the sample was 5 K and the grating wavevector was oriented along the

crystallographic b axis (parallel to the Cu-O chains).

The curves are normalized to their value at time delay zero. The R curves, which
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Figure 6.2: (top panel) Change in the specular reflection coefficient, R, as a function of
time delay following creation of the grating, for several values of the pump intensity. R
is normalized to unity at time delay zero to illustrate the systematic slowing down of the
recombination rate as the excitation density is decreased. (bottom panel) Normalized am-
plitude of the diffracted probe beam as a function of time delay for the same values of pump
intensity used to measure R.



94

decay due to recombination, are nonexponential, and their characteristic rate of decay

increases with increasing concentration [45]. The increase of recombination rate with density

is consistent with the idea that each quasiparticle must encounter another to scatter into

the Cooper pair condensate. The corresponding TG curves depend strongly on the pump

intensity as well. However the time dependence at each pump intensity is different from

R because TG reflects the combined effects of recombination and propagation. In systems

where the recombination rate is independent of density, it is relatively straightforward to

separate the effects of particle decay and diffusion. If the average concentration decays

exponentially with rate γ, the amplitude of the grating decays with rate γ + Dq2, where D

is the diffusion coefficient and q is the wavevector of the grating, 2π/λg. The ratio TG/R,

which decays simply as exp(-Dq2t), isolates the effects of diffusion on the evolution of the

particle density.

With this example in mind, we are led to consider TG/R for our data (see Fig.

6.3). The left, and right, panels show TG/R for grating periods of 2, and 5 µm, respectively,

for several values of the pump laser intensity. Unlike the example of density-independent

recombination, the decay of TG/R is nonexponential and highly dependent on the excitation

density. At high intensity TG/R recovers its value at zero time delay, after an initial rapid

decrease. TG/R is nearly independent of grating period at high intensity. As intensity

decreases, the minimum of TG/R moves systematically towards longer times and the decay

approaches a simple exponential. The exponential rate at low pump laser intensity clearly

depends strongly on λg, as is expected if the grating decays due to diffusion.
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Figure 6.3: The ratio TG/R for the same pump intensities as in Fig. 6.2 (with P=0.63
mW omitted for clarity) for grating period 2µ (left panel) and 5µ (right panel). At high
excitation density the curves are nearly independent of the period. At low excitation density
the grating enters the propagation-dominated regime where the decay of TG/R depends
strongly on the period of the grating.

6.4 Analysis of intensity dependence

The dependence of TG/R on laser intensity and grating period results from an

interplay of density-dependent recombination, diffusion, and energy transfer. To unravel

these effects we have modelled the quasiparticle dynamics by adding a quadratic recombi-

nation term to the diffusion equation: ∂n(x, t)/∂t = D∂2n(x, t)/∂x2 − βn2(x, t). Here, n

is the quasiparticle density and β is the recombination coefficient, which is a measure of

the inelastic scattering rate [43]. The dynamics predicted by this equation depend on the

relative magnitude of βn and Dq2. In the high density regime, βn À Dq2, recombination
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dominates over diffusion. Because the rate is more rapid where n is larger, recombination

distorts the sinusoidal grating by flattening the crests. The distortion of the grating profile

reduces the component of n at the fundamental grating period faster than its spatial aver-

age. This accounts for the initial decrease of TG/R. However, if this were the only process

TG/R would never bounce back to its initial value, as it is seen to do in Fig. 6.3.

6.4.1 High intensity regime

TG/R recovers in the high-intensity regime because the energy released as the

quasiparticles recombine appears in another form, one that also creates a change in the in-

dex of refraction. In conventional superconductors the quasiparticle energy is converted to

lattice vibrational energy, which (in the presence of electron-phonon coupling) will change

the index. While phonons may play this role in the cuprate superconductors as well, excita-

tions involving the flipping of electron spins may be generated instead when quasiparticles

recombine [43]. In either case, the recovery of TG/R follows if this secondary form of energy

does not diffuse on the 100 ps time scale. In this case, the original sinusoidal distribution

of energy is written into a stationary form of energy before the quasiparticles have had a

chance to diffuse. When almost all the energy has been handed off from the quasiparticles

to non-propagating modes, the grating recovers its sinusoidal profile and TG/R returns to

its value at time zero. The energy remains frozen until the nanosecond time scale, when

thermal diffusion becomes significant [37]. To illustrate this, we have numerically solved

the diffusion equation given in previous section, the results are shown in Fig. 6.4.



97

Figure 6.4: Evolution of the quasiparticle concentration (n(x, t) which is shown in light-
blue shading) in the recombination-dominated regime according to the equation given in
the text. The pattern on the top is the initial density profile and the patterns below show
its evolution in time. After creation, recombination is most rapid in the regions of highest
quasiparticle density. The density-dependent recombination distorts the sinusoidal grating
by flattening the crests. This leads to decay of TG/R even in the absence of diffusion.
The grey regions show the energy accumulated as the quasiparticles recombine, which is
proportional to n(x, 0) − n(x, t). The recovery of TG/R to its initial value at long times
indicates that this energy is stored in non-propagating modes which also induce a change
in the index of refraction. When all of the energy originally stored in the quasiparticles
transfers to such modes, the index grating recovers its initial sinusoidal form, and TG/R
approaches its value at time zero.
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Figure 6.5: TG/R at low power (P=0.32 mW) for several grating periods between 2 and 5
µm. in underdoped YBCO at 5K

6.4.2 Low intensity regime

The effects of diffusion dominate in the low density regime, βn ¿ Dq2, where

quasiparticle motion washes out the grating before energy transfer can take place. According

to the equation governing n(x, t), TG/R becomes q dependent and intensity independent in

this limit. To find the rate of diffusion, we measured TG/R at low power (P=0.32 mW) for

several grating periods between 2 and 5 µm shown in 6.5 . The initial decay rate of TG/R at

low power is plotted as a function of q2 in Fig. 6.6. The decay rate depends systematically

on the grating period, demonstrating that the dynamics are in the propagation-dominated

regime. The rates for the grating oriented along both the a and b crystallographic directions
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Figure 6.6: Initial decay rate of TG/R, for the same low intensity as in Fig. 6.3, plotted as
a function of the square of the grating wavevector. Results are shown for two perpendicular
orientations of the grating. The linear dependence of the rate on q2 demonstrates that the
propagation is diffusive. The slopes of linear fits yield diffusion coefficients Da = 20 cm2/s
and Db = 24 cm2/s.

are plotted. For both directions the rate is a linear function of q2, demonstrating that the

quasiparticle propagation is diffusive. From the slope of a linear fit we determine that

Da=20 cm2/s and Db=24 cm2/s. The intercept as q tends to zero is the decay rate due to

recombination.
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Figure 6.7: TG/R at low power (P=0.32 mW) for several grating periods between 2 and 5
µm. in underdoped BSCCO at 5K

6.5 Comparison with BSCCO

In the previous section, we presented measurements of diffusion constant in un-

derdoped YBCO (YBa2Cu3O6.5). It is of great interest to be able to compare YBCO

with BSCCO. Optical experiments are capable of studying both samples contrary to scan-

ning tunnelling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES)

which tend to work only for BSCCO. Recent STM experiments [33] show evidence of elec-

tronic inhomogeneity in 30 A0 scale in BSSCO. But there are discussions whether observed

inhomogeneity only exists at the surface or it is a property of bulk. Since the light at 820

nm penetrates about 100 unit cells, optically measured diffusion constant is a property of
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Figure 6.8: Initial decay rate of TG/R, for the same low intensity as in Fig. 6.3, plotted
as a function of the square of the grating wavevector for both YBCO and BSCCO. Green
points are for BSCCO and they lie on top of YBCO a axis data yielding a diffusion constant
of D = 20 cm2/s

bulk.

We have performed transient grating experiments in underdoped BSCCO single

crystal with Tc = 70 K. These experiments are performed under the identical conditions to

those described in Section 6.4.2. We studied the dependence of TG/R on the wave vector

q of grating in BSCCO shown in Fig. 6.7. This is analogous to Fig. 6.5 in YBCO. Similar

to Fig. 6.6 in YBCO, we can plot the initial decay rate of these curves as a function of q2

of the grating. The results are shown in Fig. 6.8 as green points together with the YBCO

data from Fig. 6.6. This plot shows that the diffusion in BSCCO is identical to diffusion
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in YBCO along a axis. We will discuss the possible implications of this result in the next

section.

6.6 Discussion

It is possible to infer the mean free time τ and mean square velocity < v2 > of

nonequilibrium quasiparticles from the values of D quoted above. A lower bound on τ is

obtained by inserting the maximum quasiparticle velocity, the Fermi velocity vF , into the

kinetic formula, D =< v2 > τ/2. The literature value [49] vF = 2× 107 cm/s yields a lower

bound of 100 fs. An upper bound on τ of essentially the same value can also be inferred from

the experiment. If τ were significantly longer than 100 fs then quasiparticle propagation

would be ballistic on the subpicosecond time scale. However, the time (see Fig. 6.9) and

wavevector dependence of TG proves that quasiparticle motion is diffusive at the earliest

times we can resolve, which is ∼ 300 fs after creation of the grating. Thus the allowed

values of τ and v are narrowly bracketed near 100 fs and vF , respectively. Furthermore,

the measurements indicate that τ is determined by elastic, rather than inelastic, processes.

The nonequilibrium particles survive for ≈ 100 ps, and therefore scatter ≈ 1000 times

before decaying. This would be impossible if each scattering event resulted in a significant

reduction of the quasiparticle’s energy.

Equilibrium measurements find (in the same crystal and at the same temperature)

that τ = 20 ps [48], which is 200 times longer than τ of the nonequilibrium quasiparticles.

The contrast suggests that the nonequilibrium quasiparticles are different from those present

in thermal equilibrium. The equilibrium particles occupy states which have a small energy
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Figure 6.9: The mean value of the grating (R, shown as dotted line) and the ratio of the
grating amplitude to the mean value (TG/R, shown as the solid line) at short times. The
dashed curve shows that the ratio is exponential beginning at the earliest resolvable times,
indicating that the diffusive motion is starts no later than the first 300 fs

(kBT ) relative to the chemical potential, and therefore lie very near the gap nodes. If the

nonequilibrium quasiparticles are different, they must occupy higher energy states, perhaps

ones closer to the antinodal regions of momentum space. It is possible that the constraints

of momentum and energy conservation prevent relaxation of antinodal quasiparticles to

the nodal regions. If the particles are antinodal, it is relevant to compare the width of

the antinodal quasiparticle peak as measured by photoemission with h̄/τ as measured by

nonequilibrium transport. The peak width of 14 meV [14] corresponds to τ=50 fs, which

is close to the transport value, particularly considering that photoemission is performed
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on Bi2Sr2CaCu2O8 rather than YBa2Cu3O6.5. The similarity of lifetimes suggests that the

peak width in photoemission may be controlled by elastic scattering as well.

Finally, we discuss the implications of having identical diffusion coefficients in

YBCO and BSCCO. As explained above, one can estimate a mean free time of 100 fs from

the measured diffusion coefficient for both materials. If we convert this to a mean free

path, we get a value of about 200 A0. the significance of this number is that it is 5 to

6 times bigger than typical size of the patches seen in the STM experiment [33]. Unless

the nonequilibrium quasiparticles are somehow not scattered by the boundaries of these

patches, this would mean that the observed inhomogeneity lies in the surface rather than

being in the bulk.

The transient grating method reported here promises to be broadly applicable to

superconductors, as well as other materials in which there is a gap in the quasiparticle

spectrum. The technique works readily in transmission or reflection geometry and therefore

can be applied to bulk materials or thin films. The propagation of quasiparticles can be

tracked in any system where nonequilibrium excitations generate a change in the index of

refraction at the laser wavelength. In conventional superconductors, quasiparticle diffusion

can be measured without fabricating trapping layers and junction detectors. In more exotic

systems with multiple or anisotropic gaps, such as reported here, the transient grating

technique can track the propagation of quasiparticles that conventional transport methods

cannot detect.
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